A lossless reduction of geodesics on supermanifolds to non-graded differential geometry
Archivum mathematicum, Tome 50 (2014) no. 4, pp. 205-218.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let ${\mathcal{M}}= (M,\mathcal{O}_\mathcal{M})$ be a smooth supermanifold with connection $\nabla $ and Batchelor model $\mathcal{O}_\mathcal{M}\cong \Gamma _{\Lambda E^\ast }$. From $({\mathcal{M}},\nabla )$ we construct a connection on the total space of the vector bundle $E\rightarrow {M}$. This reduction of $\nabla $ is well-defined independently of the isomorphism $\mathcal{O}_\mathcal{M} \cong \Gamma _{\Lambda E^\ast }$. It erases information, but however it turns out that the natural identification of supercurves in ${\mathcal{M}}$ (as maps from $ \mathbb{R}^{1|1}$ to $\mathcal{M}$) with curves in $E$ restricts to a 1 to 1 correspondence on geodesics. This bijection is induced by a natural identification of initial conditions for geodesics on ${\mathcal{M}}$, resp. $E$. Furthermore a Riemannian metric on $\mathcal{M}$ reduces to a symmetric bilinear form on the manifold $E$. Provided that the connection on ${\mathcal{M}}$ is compatible with the metric, resp. torsion free, the reduced connection on $E$ inherits these properties. For an odd metric, the reduction of a Levi-Civita connection on ${\mathcal{M}}$ turns out to be a Levi-Civita connection on $E$.
DOI : 10.5817/AM2014-4-205
Classification : 53B21, 53C05, 53C22, 58A50
Keywords: supermanifolds; geodesics; Riemannian metrics; connections
@article{10_5817_AM2014_4_205,
     author = {Garnier, St\'ephane and Kalus, Matthias},
     title = {A lossless reduction of geodesics on supermanifolds to non-graded  differential geometry},
     journal = {Archivum mathematicum},
     pages = {205--218},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2014},
     doi = {10.5817/AM2014-4-205},
     mrnumber = {3291850},
     zbl = {06487007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-205/}
}
TY  - JOUR
AU  - Garnier, Stéphane
AU  - Kalus, Matthias
TI  - A lossless reduction of geodesics on supermanifolds to non-graded  differential geometry
JO  - Archivum mathematicum
PY  - 2014
SP  - 205
EP  - 218
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-205/
DO  - 10.5817/AM2014-4-205
LA  - en
ID  - 10_5817_AM2014_4_205
ER  - 
%0 Journal Article
%A Garnier, Stéphane
%A Kalus, Matthias
%T A lossless reduction of geodesics on supermanifolds to non-graded  differential geometry
%J Archivum mathematicum
%D 2014
%P 205-218
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-205/
%R 10.5817/AM2014-4-205
%G en
%F 10_5817_AM2014_4_205
Garnier, Stéphane; Kalus, Matthias. A lossless reduction of geodesics on supermanifolds to non-graded  differential geometry. Archivum mathematicum, Tome 50 (2014) no. 4, pp. 205-218. doi : 10.5817/AM2014-4-205. http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-205/

Cité par Sources :