A lossless reduction of geodesics on supermanifolds to non-graded differential geometry
Archivum mathematicum, Tome 50 (2014) no. 4, pp. 205-218
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let ${\mathcal{M}}= (M,\mathcal{O}_\mathcal{M})$ be a smooth supermanifold with connection $\nabla $ and Batchelor model $\mathcal{O}_\mathcal{M}\cong \Gamma _{\Lambda E^\ast }$. From $({\mathcal{M}},\nabla )$ we construct a connection on the total space of the vector bundle $E\rightarrow {M}$. This reduction of $\nabla $ is well-defined independently of the isomorphism $\mathcal{O}_\mathcal{M} \cong \Gamma _{\Lambda E^\ast }$. It erases information, but however it turns out that the natural identification of supercurves in ${\mathcal{M}}$ (as maps from $ \mathbb{R}^{1|1}$ to $\mathcal{M}$) with curves in $E$ restricts to a 1 to 1 correspondence on geodesics. This bijection is induced by a natural identification of initial conditions for geodesics on ${\mathcal{M}}$, resp. $E$. Furthermore a Riemannian metric on $\mathcal{M}$ reduces to a symmetric bilinear form on the manifold $E$. Provided that the connection on ${\mathcal{M}}$ is compatible with the metric, resp. torsion free, the reduced connection on $E$ inherits these properties. For an odd metric, the reduction of a Levi-Civita connection on ${\mathcal{M}}$ turns out to be a Levi-Civita connection on $E$.
DOI :
10.5817/AM2014-4-205
Classification :
53B21, 53C05, 53C22, 58A50
Keywords: supermanifolds; geodesics; Riemannian metrics; connections
Keywords: supermanifolds; geodesics; Riemannian metrics; connections
@article{10_5817_AM2014_4_205,
author = {Garnier, St\'ephane and Kalus, Matthias},
title = {A lossless reduction of geodesics on supermanifolds to non-graded differential geometry},
journal = {Archivum mathematicum},
pages = {205--218},
publisher = {mathdoc},
volume = {50},
number = {4},
year = {2014},
doi = {10.5817/AM2014-4-205},
mrnumber = {3291850},
zbl = {06487007},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-205/}
}
TY - JOUR AU - Garnier, Stéphane AU - Kalus, Matthias TI - A lossless reduction of geodesics on supermanifolds to non-graded differential geometry JO - Archivum mathematicum PY - 2014 SP - 205 EP - 218 VL - 50 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-205/ DO - 10.5817/AM2014-4-205 LA - en ID - 10_5817_AM2014_4_205 ER -
%0 Journal Article %A Garnier, Stéphane %A Kalus, Matthias %T A lossless reduction of geodesics on supermanifolds to non-graded differential geometry %J Archivum mathematicum %D 2014 %P 205-218 %V 50 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2014-4-205/ %R 10.5817/AM2014-4-205 %G en %F 10_5817_AM2014_4_205
Garnier, Stéphane; Kalus, Matthias. A lossless reduction of geodesics on supermanifolds to non-graded differential geometry. Archivum mathematicum, Tome 50 (2014) no. 4, pp. 205-218. doi: 10.5817/AM2014-4-205
Cité par Sources :