Jordan- and Lie geometries
Archivum mathematicum, Tome 49 (2013) no. 5, pp. 275-293.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In these lecture notes we report on research aiming at understanding the relation beween algebras and geometries, by focusing on the classes of Jordan algebraic and of associative structures and comparing them with Lie structures. The geometric object sought for, called a generalized projective, resp. an associative geometry, can be seen as a combination of the structure of a symmetric space, resp. of a Lie group, with the one of a projective geometry. The text is designed for readers having basic knowledge of Lie theory – we give complete definitions and explain the results by presenting examples, such as Grassmannian geometries.
DOI : 10.5817/AM2013-5-275
Classification : 16-02, 16W10, 17C37, 20N10, 22A30, 51B25, 51P05, 81P05
Keywords: Jordan algebra (triple system, pair); associative algebra (triple systems, pair); Lie algebra (triple system); graded Lie algebra; symmetric space; torsor (heap, groud, principal homogeneous space); homotopy and isotopy; Grassmannian; generalized projective geometry
@article{10_5817_AM2013_5_275,
     author = {Bertram, Wolfgang},
     title = {Jordan- and {Lie} geometries},
     journal = {Archivum mathematicum},
     pages = {275--293},
     publisher = {mathdoc},
     volume = {49},
     number = {5},
     year = {2013},
     doi = {10.5817/AM2013-5-275},
     mrnumber = {3159327},
     zbl = {06383790},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-275/}
}
TY  - JOUR
AU  - Bertram, Wolfgang
TI  - Jordan- and Lie geometries
JO  - Archivum mathematicum
PY  - 2013
SP  - 275
EP  - 293
VL  - 49
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-275/
DO  - 10.5817/AM2013-5-275
LA  - en
ID  - 10_5817_AM2013_5_275
ER  - 
%0 Journal Article
%A Bertram, Wolfgang
%T Jordan- and Lie geometries
%J Archivum mathematicum
%D 2013
%P 275-293
%V 49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-275/
%R 10.5817/AM2013-5-275
%G en
%F 10_5817_AM2013_5_275
Bertram, Wolfgang. Jordan- and Lie geometries. Archivum mathematicum, Tome 49 (2013) no. 5, pp. 275-293. doi : 10.5817/AM2013-5-275. http://geodesic.mathdoc.fr/articles/10.5817/AM2013-5-275/

Cité par Sources :