Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$
Archivum mathematicum, Tome 49 (2013) no. 3, pp. 161-185 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the symplectic twistor operator $T_s$ in symplectic spin geometry of real dimension two, as a symplectic analogue of the Dolbeault operator in complex spin geometry of complex dimension 1. Based on the techniques of the metaplectic Howe duality and algebraic Weyl algebra, we compute the space of its solutions on ${\mathbb{R}}^2$.
We introduce the symplectic twistor operator $T_s$ in symplectic spin geometry of real dimension two, as a symplectic analogue of the Dolbeault operator in complex spin geometry of complex dimension 1. Based on the techniques of the metaplectic Howe duality and algebraic Weyl algebra, we compute the space of its solutions on ${\mathbb{R}}^2$.
DOI : 10.5817/AM2013-3-161
Classification : 53C27, 53D05, 81R25
Keywords: symplectic spin geometry; metaplectic Howe duality; symplectic twistor operator; symplectic Dirac operator
@article{10_5817_AM2013_3_161,
     author = {Dost\'alov\'a, Marie and Somberg, Petr},
     title = {Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$},
     journal = {Archivum mathematicum},
     pages = {161--185},
     year = {2013},
     volume = {49},
     number = {3},
     doi = {10.5817/AM2013-3-161},
     mrnumber = {3144180},
     zbl = {06321156},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-161/}
}
TY  - JOUR
AU  - Dostálová, Marie
AU  - Somberg, Petr
TI  - Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$
JO  - Archivum mathematicum
PY  - 2013
SP  - 161
EP  - 185
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-161/
DO  - 10.5817/AM2013-3-161
LA  - en
ID  - 10_5817_AM2013_3_161
ER  - 
%0 Journal Article
%A Dostálová, Marie
%A Somberg, Petr
%T Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$
%J Archivum mathematicum
%D 2013
%P 161-185
%V 49
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-161/
%R 10.5817/AM2013-3-161
%G en
%F 10_5817_AM2013_3_161
Dostálová, Marie; Somberg, Petr. Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$. Archivum mathematicum, Tome 49 (2013) no. 3, pp. 161-185. doi: 10.5817/AM2013-3-161

[1] Baum, H., Friedrich, T., Kath., I., Gruenewald, F.: Twistors and Killing Spinors on Riemannian Manifolds. B.G. Teubner, 1991.

[2] Bie, H. De, Somberg, P., Souček, V.: The Howe Duality and Polynomial Solutions for the Symplectic Dirac Operator. Archive http://arxiv.org/pdf/1002.1053v1.pdf

[3] Britten, D. J., Lemire, F. W.: On modules of bounded multiplicities for the symplectic algebras. Trans. Amer. Math. Soc. 351 (1999), 3413–3431. | DOI | MR | Zbl

[4] Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures. Springer Netherlands, 2009. | MR

[5] Dostálová, M., Somberg, P.: Symplectic twistor operator and its solution space on ${\mathbb{R}}^{2n}$. Complex Analysis and Operator Theory 4 (2013). | MR

[6] Friedrich, T.: Dirac Operators in Riemannian Geometry. AMS, 2000. | MR | Zbl

[7] Fulton, W., Harris, J.: Representation Theory: A First Course (Graduate Texts in Mathematics/Readings in Mathematics). Springer, 1991. | MR

[8] Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators. Lecture Notes in Mathematics, 1887, Springer-Verlag, Berlin, 2006. | MR | Zbl

[9] Kadlcakova, L.: Contact Symplectic Geometry in Parabolic Invariant Theory and Symplectic Dirac Operator. Dissertation Thesis, Mathematical Institute of Charles University, Prague, 2002. | MR | Zbl

[10] Kostant, B.: Symplectic Spinors. Rome Symposia XIV (1974), 139–152. | MR | Zbl

Cité par Sources :