Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$
Archivum mathematicum, Tome 49 (2013) no. 3, pp. 161-185.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce the symplectic twistor operator $T_s$ in symplectic spin geometry of real dimension two, as a symplectic analogue of the Dolbeault operator in complex spin geometry of complex dimension 1. Based on the techniques of the metaplectic Howe duality and algebraic Weyl algebra, we compute the space of its solutions on ${\mathbb{R}}^2$.
DOI : 10.5817/AM2013-3-161
Classification : 53C27, 53D05, 81R25
Keywords: symplectic spin geometry; metaplectic Howe duality; symplectic twistor operator; symplectic Dirac operator
@article{10_5817_AM2013_3_161,
     author = {Dost\'alov\'a, Marie and Somberg, Petr},
     title = {Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$},
     journal = {Archivum mathematicum},
     pages = {161--185},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2013},
     doi = {10.5817/AM2013-3-161},
     mrnumber = {3144180},
     zbl = {06321156},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-161/}
}
TY  - JOUR
AU  - Dostálová, Marie
AU  - Somberg, Petr
TI  - Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$
JO  - Archivum mathematicum
PY  - 2013
SP  - 161
EP  - 185
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-161/
DO  - 10.5817/AM2013-3-161
LA  - en
ID  - 10_5817_AM2013_3_161
ER  - 
%0 Journal Article
%A Dostálová, Marie
%A Somberg, Petr
%T Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$
%J Archivum mathematicum
%D 2013
%P 161-185
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-161/
%R 10.5817/AM2013-3-161
%G en
%F 10_5817_AM2013_3_161
Dostálová, Marie; Somberg, Petr. Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$. Archivum mathematicum, Tome 49 (2013) no. 3, pp. 161-185. doi : 10.5817/AM2013-3-161. http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-161/

Cité par Sources :