Keywords: symplectic spin geometry; metaplectic Howe duality; symplectic twistor operator; symplectic Dirac operator
@article{10_5817_AM2013_3_161,
author = {Dost\'alov\'a, Marie and Somberg, Petr},
title = {Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$},
journal = {Archivum mathematicum},
pages = {161--185},
year = {2013},
volume = {49},
number = {3},
doi = {10.5817/AM2013-3-161},
mrnumber = {3144180},
zbl = {06321156},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-161/}
}
TY - JOUR
AU - Dostálová, Marie
AU - Somberg, Petr
TI - Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$
JO - Archivum mathematicum
PY - 2013
SP - 161
EP - 185
VL - 49
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2013-3-161/
DO - 10.5817/AM2013-3-161
LA - en
ID - 10_5817_AM2013_3_161
ER -
Dostálová, Marie; Somberg, Petr. Symplectic twistor operator and its solution space on ${\mathbb{R}}^2$. Archivum mathematicum, Tome 49 (2013) no. 3, pp. 161-185. doi: 10.5817/AM2013-3-161
[1] Baum, H., Friedrich, T., Kath., I., Gruenewald, F.: Twistors and Killing Spinors on Riemannian Manifolds. B.G. Teubner, 1991.
[2] Bie, H. De, Somberg, P., Souček, V.: The Howe Duality and Polynomial Solutions for the Symplectic Dirac Operator. Archive http://arxiv.org/pdf/1002.1053v1.pdf
[3] Britten, D. J., Lemire, F. W.: On modules of bounded multiplicities for the symplectic algebras. Trans. Amer. Math. Soc. 351 (1999), 3413–3431. | DOI | MR | Zbl
[4] Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures. Springer Netherlands, 2009. | MR
[5] Dostálová, M., Somberg, P.: Symplectic twistor operator and its solution space on ${\mathbb{R}}^{2n}$. Complex Analysis and Operator Theory 4 (2013). | MR
[6] Friedrich, T.: Dirac Operators in Riemannian Geometry. AMS, 2000. | MR | Zbl
[7] Fulton, W., Harris, J.: Representation Theory: A First Course (Graduate Texts in Mathematics/Readings in Mathematics). Springer, 1991. | MR
[8] Habermann, K., Habermann, L.: Introduction to symplectic Dirac operators. Lecture Notes in Mathematics, 1887, Springer-Verlag, Berlin, 2006. | MR | Zbl
[9] Kadlcakova, L.: Contact Symplectic Geometry in Parabolic Invariant Theory and Symplectic Dirac Operator. Dissertation Thesis, Mathematical Institute of Charles University, Prague, 2002. | MR | Zbl
[10] Kostant, B.: Symplectic Spinors. Rome Symposia XIV (1974), 139–152. | MR | Zbl
Cité par Sources :