An elementary proof of a congruence by Skula and Granville
Archivum mathematicum, Tome 48 (2012) no. 2, pp. 113-120
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $p\ge 5$ be a prime, and let $q_p(2):=(2^{p-1}-1)/p$ be the Fermat quotient of $p$ to base $2$. The following curious congruence was conjectured by L. Skula and proved by A. Granville
\[ q_p(2)^2\equiv -\sum _{k=1}^{p-1}\frac{2^k}{k^2}\quad(\operatorname{mod} p)\,. \] In this note we establish the above congruence by entirely elementary number theory arguments.
DOI :
10.5817/AM2012-2-113
Classification :
05A10, 11A07, 11B65
Keywords: congruence; Fermat quotient; harmonic numbers
Keywords: congruence; Fermat quotient; harmonic numbers
@article{10_5817_AM2012_2_113,
author = {Me\v{s}trovi\'c, Romeo},
title = {An elementary proof of a congruence by {Skula} and {Granville}},
journal = {Archivum mathematicum},
pages = {113--120},
publisher = {mathdoc},
volume = {48},
number = {2},
year = {2012},
doi = {10.5817/AM2012-2-113},
mrnumber = {2946211},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-113/}
}
TY - JOUR AU - Meštrović, Romeo TI - An elementary proof of a congruence by Skula and Granville JO - Archivum mathematicum PY - 2012 SP - 113 EP - 120 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-113/ DO - 10.5817/AM2012-2-113 LA - en ID - 10_5817_AM2012_2_113 ER -
Meštrović, Romeo. An elementary proof of a congruence by Skula and Granville. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 113-120. doi: 10.5817/AM2012-2-113
Cité par Sources :