Keywords: congruence; Fermat quotient; harmonic numbers
@article{10_5817_AM2012_2_113,
author = {Me\v{s}trovi\'c, Romeo},
title = {An elementary proof of a congruence by {Skula} and {Granville}},
journal = {Archivum mathematicum},
pages = {113--120},
year = {2012},
volume = {48},
number = {2},
doi = {10.5817/AM2012-2-113},
mrnumber = {2946211},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2012-2-113/}
}
Meštrović, Romeo. An elementary proof of a congruence by Skula and Granville. Archivum mathematicum, Tome 48 (2012) no. 2, pp. 113-120. doi: 10.5817/AM2012-2-113
[1] Agoh, T., Dilcher, K., Skula, L.: Fermat quotients for composite moduli. J. Number Theory 66 (1997), 29–50. | DOI | MR | Zbl
[2] Cao, H. Q., Pan, H.: A congruence involving product of $q$–binomial coefficients. J. Number Theory 121 (2006), 224–233. | DOI | MR
[3] Ernvall, R., Metsänkylä, T.: On the $p$–divisibility of Fermat quotients. Math. Comp. 66 (1997), 1353–1365. | DOI | MR | Zbl
[4] Glaisher, J. W. L.: On the residues of the sums of the inverse powers of numbers in arithmetical progression. Quart. J. Math. 32 (1900), 271–288.
[5] Granville, A.: Some conjectures related to Fermat’s Last Theorem. Number Theory (Banff, AB, 1988), de Gruyter, Berlin (1990), 177–192. | MR | Zbl
[6] Granville, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. Organic Mathematics–Burnaby, BC 1995, CMS Conf. Proc., vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp. 253–276. | MR | Zbl
[7] Granville, A.: The square of the Fermat quotient. Integers 4 (2004), # A22. | MR | Zbl
[8] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Clarendon Press, Oxford, 1960. | Zbl
[9] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. (1938), 350–360. | MR | Zbl
[10] Ribenboim, P.: 13 lectures on Fermat’s last theorem. Springer–Verlag, New York, Heidelberg, Berlin, 1979. | MR | Zbl
[11] Slavutsky, I. Sh.: Leudesdorf’s theorem and Bernoulli numbers. Arch. Math. 35 (1999), 299–303.
[12] Sun, Z. H.: Congruences concerning Bernoulli numbers and Bernoulli polynomials. Discrete Appl. Math. 105 (1–3) (2000), 193–223. | DOI | MR | Zbl
[13] Sun, Z. W.: Arithmetic theory of harmonic numbers. Proc. Amer. Math. Soc. 140 (2012), 415–428. | DOI | MR
[14] Tauraso, R.: Congruences involving alternating multiple harmonic sums. Electron. J. Comb. 17 (2010), # R16. | MR | Zbl
[15] Wolstenholme, J.: On certain properties of prime numbers. Quart. J. Pure Appl. Math. 5 (1862), 35–39.
Cité par Sources :