Critical exponent of graphed Teichmüller representations on
Séminaire de théorie spectrale et géométrie, Tome 32 (2014-2015), pp. 115-135
Cet article a éte moissonné depuis la source Numdam
In this note we survey different results on critical exponent. After giving the general setting and classical known results we study critical exponent associated to a pair of Teichmüller representations acting on by diagonal action. We will give new examples of behaviour of this critical exponent. We finally explain the link of this invariant with Anti-De Sitter geometry.
@article{TSG_2014-2015__32__115_0,
author = {Glorieux, Olivier},
title = {Critical exponent of graphed {Teichm\"uller} representations on $\mathbb{H}^2 \times \mathbb{H}^2$},
journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
pages = {115--135},
year = {2014-2015},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {32},
doi = {10.5802/tsg.306},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/tsg.306/}
}
TY - JOUR
AU - Glorieux, Olivier
TI - Critical exponent of graphed Teichmüller representations on $\mathbb{H}^2 \times \mathbb{H}^2$
JO - Séminaire de théorie spectrale et géométrie
PY - 2014-2015
SP - 115
EP - 135
VL - 32
PB - Institut Fourier
PP - Grenoble
UR - http://geodesic.mathdoc.fr/articles/10.5802/tsg.306/
DO - 10.5802/tsg.306
LA - en
ID - TSG_2014-2015__32__115_0
ER -
%0 Journal Article
%A Glorieux, Olivier
%T Critical exponent of graphed Teichmüller representations on $\mathbb{H}^2 \times \mathbb{H}^2$
%J Séminaire de théorie spectrale et géométrie
%D 2014-2015
%P 115-135
%V 32
%I Institut Fourier
%C Grenoble
%U http://geodesic.mathdoc.fr/articles/10.5802/tsg.306/
%R 10.5802/tsg.306
%G en
%F TSG_2014-2015__32__115_0
Glorieux, Olivier. Critical exponent of graphed Teichmüller representations on $\mathbb{H}^2 \times \mathbb{H}^2$. Séminaire de théorie spectrale et géométrie, Tome 32 (2014-2015), pp. 115-135. doi: 10.5802/tsg.306
Cité par Sources :
