Voir la notice de l'acte provenant de la source Numdam
On résume les proprietés de l’invariant de Perelman, et en combinaison avec l’invariant de Yamabe on exprime certaines proprietés géométriques des variétés de dimension en fonction de . On décrit des exemples d’annulation de en dimension , où on trouve des liens entre l’effondrement et l’existence de métriques à courbure scalaire positive. On montre qu’une version d’atoroïdalité qu’on appelle atoroïdalité complète est détectée par sur les variétés de courbure négative ou nulle de dimension .
Suárez-Serrato, Pablo 1
@article{TSG_2007-2008__26__145_0, author = {Su\'arez-Serrato, Pablo}, title = {Atoro{\"\i}dalit\'e compl\`ete et annulation de l{\textquoteright}invariant $\bar{\lambda }$ de {Perelman}}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {145--154}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {26}, year = {2007-2008}, doi = {10.5802/tsg.265}, zbl = {1185.53040}, mrnumber = {2654602}, language = {fr}, url = {http://geodesic.mathdoc.fr/articles/10.5802/tsg.265/} }
TY - JOUR AU - Suárez-Serrato, Pablo TI - Atoroïdalité complète et annulation de l’invariant $\bar{\lambda }$ de Perelman JO - Séminaire de théorie spectrale et géométrie PY - 2007-2008 SP - 145 EP - 154 VL - 26 PB - Institut Fourier PP - Grenoble UR - http://geodesic.mathdoc.fr/articles/10.5802/tsg.265/ DO - 10.5802/tsg.265 LA - fr ID - TSG_2007-2008__26__145_0 ER -
%0 Journal Article %A Suárez-Serrato, Pablo %T Atoroïdalité complète et annulation de l’invariant $\bar{\lambda }$ de Perelman %J Séminaire de théorie spectrale et géométrie %D 2007-2008 %P 145-154 %V 26 %I Institut Fourier %C Grenoble %U http://geodesic.mathdoc.fr/articles/10.5802/tsg.265/ %R 10.5802/tsg.265 %G fr %F TSG_2007-2008__26__145_0
Suárez-Serrato, Pablo. Atoroïdalité complète et annulation de l’invariant $\bar{\lambda }$ de Perelman. Séminaire de théorie spectrale et géométrie, Tome 26 (2007-2008), pp. 145-154. doi : 10.5802/tsg.265. http://geodesic.mathdoc.fr/articles/10.5802/tsg.265/
[1] K. Akutagawa, M. Ishida, C. LeBrun, Perelman’s Invariant, Ricci Flow, and the Yamabe Invariants of Smooth Manifolds, Arch. Math. 88 (2007) no.1, 71–76. | MR
[2] W.P. Barth, K. Hulek,C.A. Peters, A. Van de Ven, Compact complex surfaces. Second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4. Springer–Verlag, Berlin, 2004. | Zbl | MR
[3] S.K. Donaldson, The Seiberg–Witten equations and -manifold topology, Bull. Amer. Math. Soc. 33 (1996), no. 1, 45–70. | Zbl | MR
[4] R. Friedman, J.W. Morgan, Algebraic surfaces and Seiberg–Witten invariants, J. Algebraic Geom. 6 (1997), no. 3, 445–479. | Zbl | MR
[5] D. Gromoll J.A. Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 1971 545–552. | Zbl | MR
[6] M. Gromov, Volume and Bounded Cohomology, Pub. Math. I.H.E.S. tome 56 (1982) 5-99. | Zbl | MR | mathdoc-id
[7] M. Gromov, H.B. Lawson, Positive scalar curvature and the Dirac operator on complete riemannian manifolds, Pub. Mat. I.H.E.S. 58 (1983) 83–196. | Zbl | MR | mathdoc-id
[8] R. Hamilton, Three–manifolds with positive Ricci curvature, Journ. Diff. Geom. 17 (1982) 255–306. | Zbl | MR
[9] J.A. Hillman, Four–manifolds, Geometries and Knots, Geometry and Topology Monographs, Volume 5 (2002). | Zbl | MR
[10] B. Kleiner and J. Lott, Notes on Perelman’s Papers, Geometry &Topology 12 (2008) 2587–2855. | MR
[11] D. Kotschick, The Seiberg-Witten invariants of symplectic four-manifolds (after C. H. Taubes), Séminaire Bourbaki, Vol. 1995/96. Astérisque No. 241 (1997), Exp. No. 812, 4, 195–220. | Zbl | MR | mathdoc-id
[12] H.B. Lawson, S.T. Yau, Compact manifolds of nonpositive curvature, J. Diff. Geom. 7 (1972), 211–228. | Zbl | MR
[13] C. LeBrun, Kodaira dimension and the Yamabe problem, Comm. An. Geom. 7 (1999) 133–156. | Zbl | MR
[14] B. Leeb, P. Scott, A geometric characteristic splitting in all dimensions, Comm. Mat. Helv. 75 (2000) 201–215. | Zbl | MR
[15] G. Paternain, J. Petean, Minimal entropy and collapsing with curvature bounded from below, Invent.Math. 151 (2003) 415–450. | Zbl | MR
[16] G. Paternain, J. Petean, Entropy and collapsing of compact complex surfaces, Proc. London Math. Soc. (3) 89 (2004), no. 3, 763–786. | Zbl | MR
[17] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Prépublication (2002), arXiv:math.DG/0211159. | Zbl
[18] G. Perelman, Ricci flow with surgery on three-manifolds, Prépublication (2003), arXiv:math/0303109. | Zbl
[19] J. Petean, The Yamabe invariant of simply connected manifolds, J. Reine Angew. Math. 523 (2000), 225–231. | Zbl | MR
[20] P. Suárez-Serrato, Minimal entropy and geometric decompositions in dimension four, Algebraic & Geometric Topology 9 (2009) 365–395. | Zbl | MR
[21] P. Suárez-Serrato, Perelman’s invariant and collapse via geometric characteristic splittings, Prépublication (2008), arxiv:math.DG/0804.4588.
[22] C. H. Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809–822. | Zbl | MR
[23] R. Schoen, Variational Theory for the Total Scalar Curvature Functional for Riemannian Metrics and Related Topics, LNM 1365, Springer Verlag, Berlin (1987) 120-154. | Zbl | MR
[24] W.P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. | Zbl | MR
[25] C.T.C. Wall, Geometric structures on compact complex analytic surfaces, Topology, Vol.25, No.2 (1986) 119-153. | Zbl | MR
[26] E. Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796. | Zbl | MR
Cité par Sources :