Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics
The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 151-195

Voir la notice de l'article provenant de la source Numdam

The metric tensor of a Riemannian manifold can be approximated using Regge finite elements and such approximations can be used to compute approximations to the Gauss curvature and the Levi-Civita connection of the manifold. It is shown that certain Regge approximations yield curvature and connection approximations that converge at a higher rate than previously known. The analysis is based on covariant (distributional) curl and incompatibility operators which can be applied to piecewise smooth matrix fields whose tangential-tangential component is continuous across element interfaces. Using the properties of the canonical interpolant of the Regge space, we obtain superconvergence of approximations of these covariant operators. Numerical experiments further illustrate the results from the error analysis.

Publié le :
DOI : 10.5802/smai-jcm.98
Classification : 65N30, 53A70, 83C27
Keywords: Gauss curvature, Regge calculus, finite element method, differential geometry

Gopalakrishnan, Jay 1 ; Neunteufel, Michael 2 ; Schöberl, Joachim 2 ; Wardetzky, Max 3

1 Portland State University, PO Box 751, Portland OR 97207, USA
2 Institute for Analysis and Scientific Computing, TU Wien, Wiedner Hauptstr. 8-10, 1040 Wien, Austria
3 Institute of Numerical and Applied Mathematics, University of Göttingen, Lotzestr. 16-18, 37083 Göttingen, Germany
@article{SMAI-JCM_2023__9__151_0,
     author = {Gopalakrishnan, Jay and Neunteufel, Michael and Sch\"oberl, Joachim and Wardetzky, Max},
     title = {Analysis of curvature approximations via covariant curl and incompatibility for {Regge} metrics},
     journal = {The SMAI Journal of computational mathematics},
     pages = {151--195},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     year = {2023},
     doi = {10.5802/smai-jcm.98},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.98/}
}
TY  - JOUR
AU  - Gopalakrishnan, Jay
AU  - Neunteufel, Michael
AU  - Schöberl, Joachim
AU  - Wardetzky, Max
TI  - Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics
JO  - The SMAI Journal of computational mathematics
PY  - 2023
SP  - 151
EP  - 195
VL  - 9
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.98/
DO  - 10.5802/smai-jcm.98
LA  - en
ID  - SMAI-JCM_2023__9__151_0
ER  - 
%0 Journal Article
%A Gopalakrishnan, Jay
%A Neunteufel, Michael
%A Schöberl, Joachim
%A Wardetzky, Max
%T Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics
%J The SMAI Journal of computational mathematics
%D 2023
%P 151-195
%V 9
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.98/
%R 10.5802/smai-jcm.98
%G en
%F SMAI-JCM_2023__9__151_0
Gopalakrishnan, Jay; Neunteufel, Michael; Schöberl, Joachim; Wardetzky, Max. Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics. The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 151-195. doi: 10.5802/smai-jcm.98

Cité par Sources :