Voir la notice de l'article provenant de la source Numdam
The metric tensor of a Riemannian manifold can be approximated using Regge finite elements and such approximations can be used to compute approximations to the Gauss curvature and the Levi-Civita connection of the manifold. It is shown that certain Regge approximations yield curvature and connection approximations that converge at a higher rate than previously known. The analysis is based on covariant (distributional) curl and incompatibility operators which can be applied to piecewise smooth matrix fields whose tangential-tangential component is continuous across element interfaces. Using the properties of the canonical interpolant of the Regge space, we obtain superconvergence of approximations of these covariant operators. Numerical experiments further illustrate the results from the error analysis.
Gopalakrishnan, Jay 1 ; Neunteufel, Michael 2 ; Schöberl, Joachim 2 ; Wardetzky, Max 3
@article{SMAI-JCM_2023__9__151_0, author = {Gopalakrishnan, Jay and Neunteufel, Michael and Sch\"oberl, Joachim and Wardetzky, Max}, title = {Analysis of curvature approximations via covariant curl and incompatibility for {Regge} metrics}, journal = {The SMAI Journal of computational mathematics}, pages = {151--195}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {9}, year = {2023}, doi = {10.5802/smai-jcm.98}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.98/} }
TY - JOUR AU - Gopalakrishnan, Jay AU - Neunteufel, Michael AU - Schöberl, Joachim AU - Wardetzky, Max TI - Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics JO - The SMAI Journal of computational mathematics PY - 2023 SP - 151 EP - 195 VL - 9 PB - Société de Mathématiques Appliquées et Industrielles UR - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.98/ DO - 10.5802/smai-jcm.98 LA - en ID - SMAI-JCM_2023__9__151_0 ER -
%0 Journal Article %A Gopalakrishnan, Jay %A Neunteufel, Michael %A Schöberl, Joachim %A Wardetzky, Max %T Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics %J The SMAI Journal of computational mathematics %D 2023 %P 151-195 %V 9 %I Société de Mathématiques Appliquées et Industrielles %U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.98/ %R 10.5802/smai-jcm.98 %G en %F SMAI-JCM_2023__9__151_0
Gopalakrishnan, Jay; Neunteufel, Michael; Schöberl, Joachim; Wardetzky, Max. Analysis of curvature approximations via covariant curl and incompatibility for Regge metrics. The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 151-195. doi: 10.5802/smai-jcm.98
Cité par Sources :