Two-phase geothermal model with fracture network and multi-branch wells
The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 121-149

Voir la notice de l'article provenant de la source Numdam

This paper focuses on the numerical simulation of geothermal systems in complex geological settings. The physical model is based on two-phase Darcy flows coupling the mass conservation of the water component with the energy conservation and the liquid-vapor thermodynamical equilibrium. The discretization exploits the flexibility of unstructured meshes to model complex geology including conductive faults as well as complex wells. The polytopal and essentially nodal Vertex Approximate Gradient scheme is used for the approximation of the Darcy and Fourier fluxes combined with a Control Volume approach for the transport of mass and energy. Particular attention is paid to the faults which are modelled as two-dimensional interfaces defined as a collection of faces of the mesh and to the flow inside deviated or multi-branch wells defined as a collection of edges of the mesh with rooted tree data structure. By using an explicit pressure drop calculation, the well model reduces to a single equation based on complementarity constraints and only one well unknown, the bottom hole pressure, implicitly coupled to the reservoir unknowns. The coupled systems are solved at each time step using efficient nonlinear and linear solvers on parallel distributed architectures. The convergence of the discrete model is investigated numerically on a simple test case with a Cartesian geometry and a single vertical producer well. Then, the ability of our approach to deal efficiently with realistic test cases is assessed on a high energy faulted geothermal reservoir operated using a doublet of two deviated wells.

Publié le :
DOI : 10.5802/smai-jcm.97
Classification : 65M08, 65Y05, 76S05, 76T10
Keywords: Geothermal systems, thermal well, two-phase Darcy flow, mixed-dimensional model, faults, finite volume scheme, parallel algorithm.

Armandine Les Landes, Antoine 1 ; Castanon Quiroz, Daniel 2 ; Jeannin, Laurent 3 ; Lopez, Simon 1 ; Masson, Roland 4

1 BRGM, 3 avenue Claude-Guillemin, BP 36009, 45060 Orléans Cedex 2, France
2 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria C.P. 04510 Cd. Mx. (México)
3 STORENGY, 12 rue Raoul Nordling - Djinn - CS 70001 92274 Bois Colombes Cedex, France
4 Université Côte d’Azur, Inria, CNRS, LJAD, UMR 7351 CNRS, team Coffee, Parc Valrose 06108 Nice Cedex 02, France
@article{SMAI-JCM_2023__9__121_0,
     author = {Armandine Les Landes, Antoine and Castanon Quiroz, Daniel and Jeannin, Laurent and Lopez, Simon and Masson, Roland},
     title = {Two-phase geothermal model with fracture network and multi-branch wells},
     journal = {The SMAI Journal of computational mathematics},
     pages = {121--149},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     year = {2023},
     doi = {10.5802/smai-jcm.97},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.97/}
}
TY  - JOUR
AU  - Armandine Les Landes, Antoine
AU  - Castanon Quiroz, Daniel
AU  - Jeannin, Laurent
AU  - Lopez, Simon
AU  - Masson, Roland
TI  - Two-phase geothermal model with fracture network and multi-branch wells
JO  - The SMAI Journal of computational mathematics
PY  - 2023
SP  - 121
EP  - 149
VL  - 9
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.97/
DO  - 10.5802/smai-jcm.97
LA  - en
ID  - SMAI-JCM_2023__9__121_0
ER  - 
%0 Journal Article
%A Armandine Les Landes, Antoine
%A Castanon Quiroz, Daniel
%A Jeannin, Laurent
%A Lopez, Simon
%A Masson, Roland
%T Two-phase geothermal model with fracture network and multi-branch wells
%J The SMAI Journal of computational mathematics
%D 2023
%P 121-149
%V 9
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.97/
%R 10.5802/smai-jcm.97
%G en
%F SMAI-JCM_2023__9__121_0
Armandine Les Landes, Antoine; Castanon Quiroz, Daniel; Jeannin, Laurent; Lopez, Simon; Masson, Roland. Two-phase geothermal model with fracture network and multi-branch wells. The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 121-149. doi: 10.5802/smai-jcm.97

Cité par Sources :