Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation
The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 95-120

Voir la notice de l'article provenant de la source Numdam

Given n samples of a function f:D in random points drawn with respect to a measure ϱ S we develop theoretical analysis of the L 2 (D,ϱ T )-approximation error. For a parituclar choice of ϱ S depending on ϱ T , it is known that the weighted least squares method from finite dimensional function spaces V m , dim(V m )=m< has the same error as the best approximation in V m up to a multiplicative constant when given exact samples with logarithmic oversampling. If the source measure ϱ S and the target measure ϱ T differ we are in the domain adaptation setting, a subfield of transfer learning. We model the resulting deterioration of the error in our bounds.

Further, for noisy samples, our bounds describe the bias-variance trade off depending on the dimension m of the approximation space V m . All results hold with high probability.

For demonstration, we consider functions defined on the d-dimensional cube given in unifom random samples. We analyze polynomials, the half-period cosine, and a bounded orthonormal basis of the non-periodic Sobolev space H mix 2 . Overcoming numerical issues of this H mix 2 basis, this gives a novel stable approximation method with quadratic error decay. Numerical experiments indicate the applicability of our results.

Publié le :
DOI : 10.5802/smai-jcm.96
Classification : 41A10, 41A25, 41A60, 41A63, 42C10, 65TXX, 65F22, 65D15, 94A20
Keywords: domain adaptation, individual function approximation, least squares, sampling theory, transfer learning, unit cube, polynomial approximation

Bartel, Felix 1

1 Chemnitz University of Technology, Faculty of Mathematics, 09107 Chemnitz, Germany
@article{SMAI-JCM_2023__9__95_0,
     author = {Bartel, Felix},
     title = {Error {Guarantees} for {Least} {Squares} {Approximation} with {Noisy} {Samples} in {Domain} {Adaptation}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {95--120},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     year = {2023},
     doi = {10.5802/smai-jcm.96},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.96/}
}
TY  - JOUR
AU  - Bartel, Felix
TI  - Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation
JO  - The SMAI Journal of computational mathematics
PY  - 2023
SP  - 95
EP  - 120
VL  - 9
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.96/
DO  - 10.5802/smai-jcm.96
LA  - en
ID  - SMAI-JCM_2023__9__95_0
ER  - 
%0 Journal Article
%A Bartel, Felix
%T Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation
%J The SMAI Journal of computational mathematics
%D 2023
%P 95-120
%V 9
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.96/
%R 10.5802/smai-jcm.96
%G en
%F SMAI-JCM_2023__9__95_0
Bartel, Felix. Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation. The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 95-120. doi: 10.5802/smai-jcm.96

Cité par Sources :