Voir la notice de l'article provenant de la source Numdam
Given samples of a function in random points drawn with respect to a measure we develop theoretical analysis of the -approximation error. For a parituclar choice of depending on , it is known that the weighted least squares method from finite dimensional function spaces , has the same error as the best approximation in up to a multiplicative constant when given exact samples with logarithmic oversampling. If the source measure and the target measure differ we are in the domain adaptation setting, a subfield of transfer learning. We model the resulting deterioration of the error in our bounds.
Further, for noisy samples, our bounds describe the bias-variance trade off depending on the dimension of the approximation space . All results hold with high probability.
For demonstration, we consider functions defined on the -dimensional cube given in unifom random samples. We analyze polynomials, the half-period cosine, and a bounded orthonormal basis of the non-periodic Sobolev space . Overcoming numerical issues of this basis, this gives a novel stable approximation method with quadratic error decay. Numerical experiments indicate the applicability of our results.
Bartel, Felix 1
@article{SMAI-JCM_2023__9__95_0, author = {Bartel, Felix}, title = {Error {Guarantees} for {Least} {Squares} {Approximation} with {Noisy} {Samples} in {Domain} {Adaptation}}, journal = {The SMAI Journal of computational mathematics}, pages = {95--120}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {9}, year = {2023}, doi = {10.5802/smai-jcm.96}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.96/} }
TY - JOUR AU - Bartel, Felix TI - Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation JO - The SMAI Journal of computational mathematics PY - 2023 SP - 95 EP - 120 VL - 9 PB - Société de Mathématiques Appliquées et Industrielles UR - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.96/ DO - 10.5802/smai-jcm.96 LA - en ID - SMAI-JCM_2023__9__95_0 ER -
%0 Journal Article %A Bartel, Felix %T Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation %J The SMAI Journal of computational mathematics %D 2023 %P 95-120 %V 9 %I Société de Mathématiques Appliquées et Industrielles %U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.96/ %R 10.5802/smai-jcm.96 %G en %F SMAI-JCM_2023__9__95_0
Bartel, Felix. Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation. The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 95-120. doi: 10.5802/smai-jcm.96
Cité par Sources :