Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients
The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 99-124.

Voir la notice de l'article provenant de la source Numdam

In this paper, we investigate the effect of the space and time discretisation on the convergence properties of Schwarz Waveform Relaxation (SWR) algorithms. We consider a reaction-diffusion problem with discontinuous coefficients discretised on two non-overlapping domains with several numerical schemes (in space and time). A methodology to determine the rate of convergence of the classical SWR method with standard interface conditions (Dirichlet-Neumann or Robin-Robin) accounting for discretisation errors is presented. We discuss how such convergence rates differ from the ones derived at a continuous level (i.e. assuming an exact discrete representation of the continuous problem). In this work we consider a second-order finite difference scheme and a finite volume scheme based on quadratic spline reconstruction in space, combined with either a simple backward Euler scheme or a two-step “Padé” scheme (resembling a Diagonally Implicit Runge Kutta scheme) in time. We prove those combinations of space-time schemes to be unconditionally stable on bounded domains. We illustrate the relevance of our analysis with specifically designed numerical experiments.

Publié le :
DOI : 10.5802/smai-jcm.81
Classification : 65B99, 65L12, 65M12
Keywords: Schwarz methods, Waveform relaxation, Semi-discrete

Clement, Simon 1 ; Lemarié, Florian 1 ; Blayo, Eric 1

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France
@article{SMAI-JCM_2022__8__99_0,
     author = {Clement, Simon and Lemari\'e, Florian and Blayo, Eric},
     title = {Discrete analysis of {Schwarz} waveform relaxation for a diffusion reaction problem with discontinuous coefficients},
     journal = {The SMAI Journal of computational mathematics},
     pages = {99--124},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.81},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.81/}
}
TY  - JOUR
AU  - Clement, Simon
AU  - Lemarié, Florian
AU  - Blayo, Eric
TI  - Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 99
EP  - 124
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.81/
DO  - 10.5802/smai-jcm.81
LA  - en
ID  - SMAI-JCM_2022__8__99_0
ER  - 
%0 Journal Article
%A Clement, Simon
%A Lemarié, Florian
%A Blayo, Eric
%T Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients
%J The SMAI Journal of computational mathematics
%D 2022
%P 99-124
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.81/
%R 10.5802/smai-jcm.81
%G en
%F SMAI-JCM_2022__8__99_0
Clement, Simon; Lemarié, Florian; Blayo, Eric. Discrete analysis of Schwarz waveform relaxation for a diffusion reaction problem with discontinuous coefficients. The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 99-124. doi : 10.5802/smai-jcm.81. http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.81/

[1] Azimzadeh, P.; Forsyth, P. A. Weakly Chained Matrices, Policy Iteration, and Impulse Control, SIAM J. Numer. Anal., Volume 54 (2016) no. 3, pp. 1341-1364 | DOI | MR | Zbl

[2] Al-Khaleel, M. D.; Wu, S.-L. Quasi-overlapping Semi-discrete Schwarz Waveform Relaxation Algorithms: The Hyperbolic Problem, Comput. Methods Appl. Math., Volume 20 (2020) no. 3, pp. 397-417 | DOI | MR | Zbl

[3] Alexander, R. Diagonally Implicit Runge–Kutta Methods for Stiff O.D.E.’s, SIAM J. Numer. Anal., Volume 14 (1977) no. 6, pp. 1006-1021 | DOI | MR | Zbl

[4] Britton, N. F. et al. Reaction-diffusion equations and their applications to biology., Academic Press Inc., 1986 | MR

[5] Berthe, P.-M. Méthodes de décomposition de domaine de type relaxation d’ondes optimisées pour l’équation de convection-diffusion instationnaire discrétisée par volumes finis, Ph. D. Thesis, Paris 13 (2013) http://www.theses.fr/2013pa132055 (Thèse de doctorat dirigée par Omnes, P. et Japhet, C. Mathématiques appliquées Paris 13 2013)

[6] Berthe, P.-M.; Japhet, C.; Omnes, P. Space–Time Domain Decomposition with Finite Volumes for Porous Media Applications, Domain Decomposition Methods in Science and Engineering XXI, Springer (2014), pp. 567-575 | DOI | Zbl

[7] Beerends, R. J.; ter Morsche, H. G.; van den Berg, J. C.; van de Vrie, E. M. Fourier and Laplace Transforms, Cambridge University Press, 2003 | DOI

[8] Caetano, F.; Gander, M. J.; Halpern, L.; Szeftel, J. Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations, Netw. Heterog. Media, Volume 5 (2010) no. 3, pp. 487-505 | DOI | MR | Zbl

[9] Clement, Simon Code for Discrete analysis of SWR for a diffusion reaction problem with discontinuous coefficients, 2022 (https://zenodo.org/record/6324930) | DOI

[10] Gander, M. J. A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations, Numer. Linear Algebra Appl., Volume 6 (1999) no. 2, pp. 125-145 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Gander, M. J.; Halpern, L. Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems, SIAM J. Numer. Anal., Volume 45 (2007) no. 2, pp. 666-697 | DOI | MR | Zbl

[12] Gander, M. J.; Halpern, L.; Hubert, F.; Krell, S. Optimized Overlapping DDFV Schwarz Algorithms, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, Springer (2020), pp. 365-373 | DOI | Zbl

[13] Gander, M. J.; Halpern, L.; Kern, M. A Schwarz Waveform Relaxation Method for Advection—Diffusion—Reaction Problems with Discontinuous Coefficients and Non-matching Grids, Domain Decomposition Methods in Science and Engineering XVI, Springer (2007), pp. 283-290 | DOI

[14] Gander, M. J.; Hubert, F.; Krell, S. Optimized Schwarz Algorithms in the Framework of DDFV Schemes, Domain Decomposition Methods in Science and Engineering XXI, Springer (2014), pp. 457-466 | DOI | Zbl

[15] Gander, M. J.; Halpern, L.; Nataf, F. Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal., Volume 41 (2003) no. 5, pp. 1643-1681 | DOI | MR | Zbl

[16] Gander, M. J.; Kwok, F.; Mandal, B. C. Dirichlet–Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains, BIT Numer. Math., Volume 61 (2021) no. 1, pp. 173-207 | DOI | MR | Zbl

[17] Haynes, R. D.; Mohammad, K. Fully Discrete Schwarz Waveform Relaxation on Two Bounded Overlapping Subdomains, Domain Decomposition Methods in Science and Engineering XXV, Springer (2020), pp. 159-166 | DOI

[18] Kobayashi, M. H. On a Class of Padé Finite Volume Methods, J. Comput. Phys., Volume 156 (1999) no. 1, pp. 137-180 | DOI | MR | Zbl

[19] Lemarié, F.; Debreu, L.; Madec, G.; Demange, J.; Molines, J. M.; Honnorat, M. Stability constraints for oceanic numerical models: implications for the formulation of time and space discretizations, Ocean Modelling, Volume 92 (2015), pp. 124-148 | DOI

[20] Lemarié, F. Algorithmes de Schwarz et couplage océan-atmosphère, Theses, Université Joseph-Fourier - Grenoble I (2008) https://tel.archives-ouvertes.fr/tel-00343501

[21] Monge, A.; Birken, P. A Multirate Neumann–Neumann Waveform Relaxation Method for Heterogeneous Coupled Heat Equations, SIAM J. Sci. Comput., Volume 41 (2019) no. 5, p. S86-S105 | DOI | MR | Zbl

[22] Manfredi, G.; Ottaviani, M. Finite-difference schemes for the diffusion equation, Dynamical Systems, Plasmas and Gravitation, Springer (1999), pp. 82-92 | Zbl

[23] Nataf, F. Recent Developments on Optimized Schwarz Methods, Domain Decomposition Methods in Science and Engineering XVI, Springer (2007), pp. 115-125 | DOI | MR

[24] Nourtier-Mazauric, E.; Blayo, E. Towards efficient interface conditions for a Schwarz domain decomposition algorithm for an advection equation with biharmonic diffusion, Appl. Numer. Math., Volume 60 (2010) no. 1, pp. 83-93 https://www.sciencedirect.com/... | DOI | MR | Zbl

[25] Shchepetkin, A. F. An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling, Ocean Modelling, Volume 91 (2015), pp. 38-69 https://www.sciencedirect.com/... | DOI

[26] Smoller, J. Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften, 258, Springer, 1983 | Zbl | DOI

[27] Thery, S.; Pelletier, C.; Lemarié, F.; Blayo, E. Analysis of Schwarz waveform relaxation for the coupled Ekman boundary layer problem with continuously variable coefficients, Numer. Algorithms (2021) | DOI

[28] Wu, S.-L.; Al-Khaleel, M. D. Semi-discrete Schwarz waveform relaxation algorithms for reaction diffusion equations, BIT Numer. Math., Volume 54 (2014) no. 3, pp. 831-866 | MR | Zbl

[29] Wu, S.-L.; Al-Khaleel, M. D. Optimized waveform relaxation methods for RC circuits: discrete case, ESAIM: M2AN, Volume 51 (2017) no. 1, pp. 209-223 | DOI | MR | Zbl

[30] Wood, N.; Diamantakis, M.; Staniforth, A. A monotonically-damping second-order-accurate unconditionally-stable numerical scheme for diffusion, Quarterly Journal of the Royal Meteorological Society, Volume 133 (2007) no. 627, pp. 1559-1573 | arXiv | DOI

[31] Zisowsky, A.; Ehrhardt, M. Discrete transparent boundary conditions for parabolic systems, Math. Comput. Modelling, Volume 43 (2006) no. 3, pp. 294-309 | DOI | MR | Zbl

Cité par Sources :