A Sampling Criterion for Constrained Bayesian Optimization with Uncertainties
The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 285-309

Voir la notice de l'article provenant de la source Numdam

We consider the problem of chance constrained optimization where it is sought to optimize a function and satisfy constraints, both of which are affected by uncertainties. The real world declinations of this problem are particularly challenging because of their inherent computational cost.

To tackle such problems, we propose a new Bayesian optimization method. It applies to the situation where the uncertainty comes from some of the inputs, so that it becomes possible to define an acquisition criterion in the joint optimized-uncertain input space. The main contribution of this work is an acquisition criterion that accounts for both the average improvement in objective function and the constraint reliability. The criterion is derived following the Stepwise Uncertainty Reduction logic and its maximization provides both optimal design variables and uncertain parameters. Analytical expressions are given to efficiently calculate the criterion. Numerical studies on test functions are presented. It is found through experimental comparisons with alternative sampling criteria that the adequation between the sampling criterion and the problem contributes to the efficiency of the overall optimization.

Publié le :
DOI : 10.5802/smai-jcm.102

El Amri, Reda 1 ; Le Riche, Rodolphe 2 ; Helbert, Céline 3 ; Blanchet-Scalliet, Christophette 3 ; Da Veiga, Sébastien 4

1 Ecole Centrale de Lyon, now with IFP Energies Nouvelles, France
2 CNRS LIMOS (Mines St-Etienne and UCA), France
3 Ecole Centrale de Lyon, Institut Camille Jordan, UMR CNRS 5208, France
4 Safran Tech, Modelling & Simulation, Magny-Les-Hameaux, France
@article{SMAI-JCM_2023__9__285_0,
     author = {El Amri, Reda and Le Riche, Rodolphe and Helbert, C\'eline and Blanchet-Scalliet, Christophette and Da Veiga, S\'ebastien},
     title = {A {Sampling} {Criterion} for {Constrained} {Bayesian} {Optimization} with {Uncertainties}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {285--309},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {9},
     year = {2023},
     doi = {10.5802/smai-jcm.102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.102/}
}
TY  - JOUR
AU  - El Amri, Reda
AU  - Le Riche, Rodolphe
AU  - Helbert, Céline
AU  - Blanchet-Scalliet, Christophette
AU  - Da Veiga, Sébastien
TI  - A Sampling Criterion for Constrained Bayesian Optimization with Uncertainties
JO  - The SMAI Journal of computational mathematics
PY  - 2023
SP  - 285
EP  - 309
VL  - 9
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.102/
DO  - 10.5802/smai-jcm.102
LA  - en
ID  - SMAI-JCM_2023__9__285_0
ER  - 
%0 Journal Article
%A El Amri, Reda
%A Le Riche, Rodolphe
%A Helbert, Céline
%A Blanchet-Scalliet, Christophette
%A Da Veiga, Sébastien
%T A Sampling Criterion for Constrained Bayesian Optimization with Uncertainties
%J The SMAI Journal of computational mathematics
%D 2023
%P 285-309
%V 9
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/smai-jcm.102/
%R 10.5802/smai-jcm.102
%G en
%F SMAI-JCM_2023__9__285_0
El Amri, Reda; Le Riche, Rodolphe; Helbert, Céline; Blanchet-Scalliet, Christophette; Da Veiga, Sébastien. A Sampling Criterion for Constrained Bayesian Optimization with Uncertainties. The SMAI Journal of computational mathematics, Tome 9 (2023), pp. 285-309. doi: 10.5802/smai-jcm.102

Cité par Sources :