Voir la notice de l'acte provenant de la source Numdam
In this note, we investigate the spectral analysis and long time asymptotic convergence of semigroups associated to discrete, fractional and classical Fokker-Planck equations in some regime where the corresponding operators are close. We successively deal with the discrete and the classical Fokker-Planck model and the fractional and the classical Fokker-Planck model. In each case, we present results of uniform convergence to equilibrium based on perturbation and/or enlargement arguments and obtained in collaboration with S. Mischler in [7].
@article{SLSEDP_2015-2016____A10_0, author = {Tristani, Isabelle}, title = {Convergence to equilibrium for linear {Fokker-Planck} equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:10}, pages = {1--14}, publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique}, year = {2015-2016}, doi = {10.5802/slsedp.83}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.83/} }
TY - JOUR AU - Tristani, Isabelle TI - Convergence to equilibrium for linear Fokker-Planck equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:10 PY - 2015-2016 SP - 1 EP - 14 PB - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique UR - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.83/ DO - 10.5802/slsedp.83 LA - en ID - SLSEDP_2015-2016____A10_0 ER -
%0 Journal Article %A Tristani, Isabelle %T Convergence to equilibrium for linear Fokker-Planck equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:10 %D 2015-2016 %P 1-14 %I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique %U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.83/ %R 10.5802/slsedp.83 %G en %F SLSEDP_2015-2016____A10_0
Tristani, Isabelle. Convergence to equilibrium for linear Fokker-Planck equations. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Exposé no. 10, 14 p. doi : 10.5802/slsedp.83. http://geodesic.mathdoc.fr/articles/10.5802/slsedp.83/
[1] Gentil, I., and Imbert, C. The Lévy-Fokker-Planck equation: -entropies and convergence to equilibrium. Asymptot. Anal. 59, 3-4 (2008), 125–138.
[2] Gualdani, M. P., Mischler, S., and Mouhot, C. Factorization of non-symmetric operators and exponential -Theorem. (2013) . | HAL
[3] Mischler, S. Semigroups in Banach spaces, factorisation and spectral analysis. Work in progress.
[4] Mischler, S., and Mouhot, C. Exponential stability of slowly decaying solutions to the Kinetic-Fokker-Planck equation. (2014) , to appear in Arch. Rational Mech. Anal. | HAL
[5] Mischler, S., and Mouhot, C. Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres. Comm. Math. Phys. 288, 2 (2009), 431–502.
[6] Mischler, S., and Scher, J. Semigroup spectral analysis and growth-fragmentation equation. (2012) , to appear in Annales de l’Institut Henri Poincaré, Analyse Non Linéaire. | HAL
[7] Mischler, S., and Tristani, I. Uniform semigroup spectral analysis of the discrete, fractional & classical Fokker-Planck equations. (2015) . | HAL
[8] Mouhot, C. Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Comm. Math. Phys. 261, 3 (2006), 629–672.
[9] Tristani, I. Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting. (2013) , to appear in J. Funct. Anal. | HAL
[10] Tristani, I. Fractional Fokker-Planck equation. Commun. Math. Sci. 13, 5 (2015), 1243–1260.
Cité par Sources :