Growing Sobolev norms for the cubic defocusing Schrödinger equation
Séminaire Laurent Schwartz — EDP et applications (2013-2014), Exposé no. 16, 11 p.

Voir la notice de l'acte provenant de la source Numdam

This text aims to describe results of the authors on the long time behavior of NLS on product spaces with a particular emphasis on the existence of solutions with growing higher Sobolev norms.

DOI : 10.5802/slsedp.60

Hani, Zaher 1 ; Pausader, Benoit 2 ; Tzvetkov, Nikolay 3 ; Visciglia, Nicola 4

1 Courant Institute of Mathematical Sciences 251 Mercer Street New York NY 10012
2 Université Paris-Nord
3 Université Cergy-Pontoise
4 Universita di Pisa
@article{SLSEDP_2013-2014____A16_0,
     author = {Hani, Zaher and Pausader, Benoit and Tzvetkov, Nikolay and Visciglia, Nicola},
     title = {Growing {Sobolev} norms for the cubic defocusing {Schr\"odinger} equation},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:16},
     pages = {1--11},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2013-2014},
     doi = {10.5802/slsedp.60},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.60/}
}
TY  - JOUR
AU  - Hani, Zaher
AU  - Pausader, Benoit
AU  - Tzvetkov, Nikolay
AU  - Visciglia, Nicola
TI  - Growing Sobolev norms for the cubic defocusing Schrödinger equation
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:16
PY  - 2013-2014
SP  - 1
EP  - 11
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.60/
DO  - 10.5802/slsedp.60
LA  - en
ID  - SLSEDP_2013-2014____A16_0
ER  - 
%0 Journal Article
%A Hani, Zaher
%A Pausader, Benoit
%A Tzvetkov, Nikolay
%A Visciglia, Nicola
%T Growing Sobolev norms for the cubic defocusing Schrödinger equation
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:16
%D 2013-2014
%P 1-11
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.60/
%R 10.5802/slsedp.60
%G en
%F SLSEDP_2013-2014____A16_0
Hani, Zaher; Pausader, Benoit; Tzvetkov, Nikolay; Visciglia, Nicola. Growing Sobolev norms for the cubic defocusing Schrödinger equation. Séminaire Laurent Schwartz — EDP et applications (2013-2014), Exposé no. 16, 11 p. doi : 10.5802/slsedp.60. http://geodesic.mathdoc.fr/articles/10.5802/slsedp.60/

[1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3, (1993), 107–156. | Zbl | MR

[2] J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Internat. Math. Res. Notices 1996, no. 6, 277–304. | Zbl | MR

[3] J. Bourgain, Problems in Hamiltonian PDE’s, Geom. Funct. Anal., 2000. (Special volume, Part I), 32–56. | Zbl | MR

[4] J. Bourgain, Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not., (1998), 253-283. | Zbl | MR

[5] J. Bourgain, Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces. Israel J. Math., 193 (2013), no. 1, 441–458. | Zbl | MR

[6] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649–669. | Zbl | MR

[7] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math., 181 (2010), no. 1, 39–113. | Zbl | MR

[8] Z. Hani, Long-time strong instability and unbounded orbits for some periodic nonlinear Schödinger equations, Arch. Rat. Mech. Anal., to appear (). | DOI | MR

[9] Z. Hani, B. Pausader. N. Tzvetkov. N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications, Preprint 2013.

[10] S. Herr, D. Tataru, and N. Tzvetkov, Strichartz estimates for partially periodic solutions to Schrödinger equations in 4d and applications, J. Ang. Math., to appear, . | DOI

[11] M. Guardia and V. Kaloshin, Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc, to appear.

[12] J. Kato and F. Pusateri, A new proof of long range scattering for critical nonlinear Schrödinger equations, J. Diff. Int. Equ., Vol. 24, no. 9–10 (2011). | Zbl | MR

[13] T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys., 139 (1991), pp. 479–493. | Zbl | MR

Cité par Sources :