Geometric optics approximation for the Einstein vacuum equations
    
    
  
  
  
      
      
      
        
Séminaire Laurent Schwartz — EDP et applications (2022-2023), Exposé no. 7, 13 p.
    
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Numdam
We present recent works on the construction of high-frequency solutions to the Einstein vacuum equations in general relativity, based on [Tou22b, Tou23]. In these articles, the author shows the existence of a family of vacuum spacetimes in generalised wave gauge oscillating at frequency and defined by a geometric optics ansatz. In this survey, we first review the Cauchy theory for the Einstein vacuum equations in wave gauge, geometric optics and Burnett’s conjecture in general relativity. This will motivate our main result, for which we provide a sketch of proof high-lighting both quasi-linear and semi-linear challenges.
@article{SLSEDP_2022-2023____A2_0,
     author = {Touati, Arthur},
     title = {Geometric optics approximation for the {Einstein} vacuum equations},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:7},
     pages = {1--13},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2022-2023},
     doi = {10.5802/slsedp.159},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.159/}
}
                      
                      
                    TY - JOUR AU - Touati, Arthur TI - Geometric optics approximation for the Einstein vacuum equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:7 PY - 2022-2023 SP - 1 EP - 13 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.159/ DO - 10.5802/slsedp.159 LA - en ID - SLSEDP_2022-2023____A2_0 ER -
%0 Journal Article %A Touati, Arthur %T Geometric optics approximation for the Einstein vacuum equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:7 %D 2022-2023 %P 1-13 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.159/ %R 10.5802/slsedp.159 %G en %F SLSEDP_2022-2023____A2_0
Touati, Arthur. Geometric optics approximation for the Einstein vacuum equations. Séminaire Laurent Schwartz — EDP et applications (2022-2023), Exposé no. 7, 13 p.. doi: 10.5802/slsedp.159
Cité par Sources :
