Voir la notice de l'acte provenant de la source Numdam
This note presents the concept of monotone solutions of mean field games master equations, in several cases. The first case that I treat is the one in which the underlying game has only a finite state space. The other are the case of a continuous state space and the so-called Hilbertian approach. Most of the results presented here come from the two papers [1, 2], except for results concerning the Hilbert space case and the case of general monotone operators which are new.
@article{SLSEDP_2021-2022____A8_0, author = {Bertucci, Charles}, title = {On monotone solutions of mean field games master equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:14}, pages = {1--13}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2021-2022}, doi = {10.5802/slsedp.153}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.153/} }
TY - JOUR AU - Bertucci, Charles TI - On monotone solutions of mean field games master equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:14 PY - 2021-2022 SP - 1 EP - 13 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.153/ DO - 10.5802/slsedp.153 LA - en ID - SLSEDP_2021-2022____A8_0 ER -
%0 Journal Article %A Bertucci, Charles %T On monotone solutions of mean field games master equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:14 %D 2021-2022 %P 1-13 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.153/ %R 10.5802/slsedp.153 %G en %F SLSEDP_2021-2022____A8_0
Bertucci, Charles. On monotone solutions of mean field games master equations. Séminaire Laurent Schwartz — EDP et applications (2021-2022), Exposé no. 14, 13 p. doi : 10.5802/slsedp.153. http://geodesic.mathdoc.fr/articles/10.5802/slsedp.153/
[1] Charles Bertucci. Monotone solutions for mean field games master equations: finite state space and optimal stopping. Journal de l’École polytechnique — Mathématiques, 8:1099–1132, 2021. | Zbl
[2] Charles Bertucci. Monotone solutions for mean field games master equations: continuous state space and common noise, 2021. | arXiv
[3] Charles Bertucci and Alekos Cecchin. Mean field games master equations: from discrete to continuous state space, 2022. Available at charles-bertucci@github.io.
[4] Charles Bertucci, Jean-Michel Lasry, and Pierre-Louis Lions. On Lipschitz solutions of mean field games master equations, 2022. Forthcoming.
[5] Pierre Cardaliaguet and Panagiotis Souganidis. Monotone solutions of the master equation for mean field games with idiosyncratic noise. SIAM Journal on Mathematical Analysis, 54(4):4198–4237, 2022. | Zbl | MR | DOI
[6] Pierre Cardaliaguet, François Delarue, Jean-Michel Lasry, and Pierre-Louis Lions. The Master Equation and the Convergence Problem in Mean Field Games:(AMS-201), volume 201. Princeton University Press, 2019. | Zbl
[7] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese Journal of Mathematics, 2(1):229–260, 2007. | MR | DOI | Zbl
[8] Pierre-Louis Lions. Cours au College de France, 2011. www.college-de-france.fr.
[9] Charles Stegall. Optimization of functions on certain subsets of Banach spaces. Mathematische Annalen, 236(2):171–176, 1978. | MR | DOI | Zbl
[10] Charles Stegall. Optimization and differentiation in Banach spaces. Linear Algebra and Its Applications, 84:191–211, 1986. | Zbl | DOI | MR
Cité par Sources :