A new commutator method for averaging lemmas
Séminaire Laurent Schwartz — EDP et applications (2019-2020), Exposé no. 10, 19 p.

Voir la notice de l'acte provenant de la source Numdam

This document corresponds to the talk that the first author gave at the Laurent Schwartz seminar on March 10th 2020. It introduces, in a simplified setting, a novel commutator method to obtain averaging lemma estimates. Averaging lemmas are a type regularizing effect on averages in velocity of solutions to kinetic equations. We introduce a new bilinear approach that naturally leads to velocity averages in L 2 ([0,T],H x s ). The new method outperforms classical averaging lemma results when the right-hand side of the kinetic equation has enough integrability. It also allows a perturbative approach to averaging lemmas which provides, for the first time, explicit regularity results for non-homogeneous velocity fluxes.

Publié le :
DOI : 10.5802/slsedp.142

Jabin, Pierre-Emmanuel 1 ; Lin, Hsin-Yi 2 ; Tadmor, Eitan 3

1 Pennsylvania State University, Department of Mathematics and Huck Institutes, State College, PA 16802, USA
2 CIRES, University of Colorado Boulder, CO 80309, USA
3 Department of Mathematics and Institute for Physical Sciences & Technology (IPST), University of Maryland, College Park, MD 20742, USA
@article{SLSEDP_2019-2020____A7_0,
     author = {Jabin, Pierre-Emmanuel and Lin, Hsin-Yi and Tadmor, Eitan},
     title = {A new commutator method for averaging~lemmas},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:10},
     pages = {1--19},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2019-2020},
     doi = {10.5802/slsedp.142},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.142/}
}
TY  - JOUR
AU  - Jabin, Pierre-Emmanuel
AU  - Lin, Hsin-Yi
AU  - Tadmor, Eitan
TI  - A new commutator method for averaging lemmas
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:10
PY  - 2019-2020
SP  - 1
EP  - 19
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.142/
DO  - 10.5802/slsedp.142
LA  - en
ID  - SLSEDP_2019-2020____A7_0
ER  - 
%0 Journal Article
%A Jabin, Pierre-Emmanuel
%A Lin, Hsin-Yi
%A Tadmor, Eitan
%T A new commutator method for averaging lemmas
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:10
%D 2019-2020
%P 1-19
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.142/
%R 10.5802/slsedp.142
%G en
%F SLSEDP_2019-2020____A7_0
Jabin, Pierre-Emmanuel; Lin, Hsin-Yi; Tadmor, Eitan. A new commutator method for averaging lemmas. Séminaire Laurent Schwartz — EDP et applications (2019-2020), Exposé no. 10, 19 p. doi : 10.5802/slsedp.142. http://geodesic.mathdoc.fr/articles/10.5802/slsedp.142/

[1] V.I. Agoshkov. Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation. Dokl. Akad. Nauk SSSR, 276(6):1289-1293, 1984.

[2] D. Arsénio, N. Lerner. An energy method for averaging lemmas. | arXiv

[3] D. Arsénio, L. Saint-Raymond. Compactness in kinetic transport equations and hypoellipticity. J. Funct. Anal., 261(10), (2011), 3044-3098. | Zbl | MR | DOI

[4] D. Arsénio, N. Masmoudi, A new approach to velocity averaging lemmas in Besov spaces, J. Math. Pures Appl.(9) 101 (2014), no. 4, 495-551. | Zbl | MR | DOI

[5] D. Arsénio, N. Masmoudi. Maximal gain of regularity in velocity averaging lemmas, Analysis and PDE, Vol. 12 (2019), No. 2, 333-388. | Zbl | DOI | MR

[6] M. Bézard, Régularité L p précisée des moyennes dans les équations de transport, Bull. Soc. Math. France, 122(1) (1994) 29-76. | Zbl | DOI

[7] F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl. (9) 81 (11) (2002) 1135–1159. | Zbl | MR | DOI

[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Viriel, Morawetz, and interaction Morawetz inequalities.

[9] R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), 511-547. | Zbl | MR | DOI

[10] R.J. DiPerna, P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math. 42 (1989), 729-757. | Zbl | MR | DOI

[11] R. J. DiPerna, P.-L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability, Ann. of Math. .2/ 130:2 (1989), 321-366. | MR | DOI | Zbl

[12] R. J. DiPerna, P.-L. Lions, Y. Meyer, L p regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), no. 3-4, 271-287. | Zbl | DOI

[13] C. De Lellis, M. Westdickenberg, On the optimality of velocity averaging lemmas, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 6, 1075-1085. | Zbl | MR | DOI

[14] R. DeVore, G. Petrova, The averaging lemma, J. Amer. Math. Soc. 14 (2001), no. 2, 279-296. | DOI | Zbl | MR

[15] S. Doi, On the Cauchy problem for Schrödinger type equations and the regularity of the solutions. J. Math. Kyoto Univ. 34 (1994), no. 2, 319-328. | Zbl | DOI

[16] D. Han-Kwan, L 1 averaging lemma for transport equations with Lipschitz force fields, Kinet. Relat. Models 3 (4) (2010) 669-683. | MR | Zbl | DOI

[17] M. Escobedo, S. Mischler and M. Valle (2003), Homogeneous Boltzmann equation in quantum relativistic kinetic theory, Vol. 4 of Electronic Journal of Differential Equations. Monograph, Southwest Texas State University, San Marcos, TX.

[18] F. Golse, P.-L. Lions, B. Perthame, R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 76 (1988), no. 1, 110-125. | MR | DOI | Zbl

[19] F. Golse, F. Poupaud, Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac, Asymptotic Anal. 6 (1992) 135-160. | DOI | Zbl

[20] F. Golse, L. Saint-Raymond, Hydrodynamic limits for the Boltzmann equation, Riv. Mat. Univ. Parma 4 (2005), 1-144. | Zbl

[21] F. Golse, B. Perthame, Optimal regularizing effect for scalar conservation laws, Rev. Mat. Iberoam., 29 (2013), no. 4, 1477-1504. | Zbl | MR | DOI

[22] F. Golse and L. Saint-Raymond, Velocity averaging in L 1 for the transport equation, C. R. Acad. Sci. Paris Ser. I Math, 334 (2002), 557-562. | Zbl | MR | DOI

[23] F. Golse, Fluid dynamic limits of the kinetic theory of gases, From particle systems to partial differential equations. Springer, Berlin, Heidelberg, (2014), 3-91. | Zbl | DOI

[24] I. Gasser, P. Markowich, B. Perthame, Dispersion and Moments Lemma revisited, J. Differential Equations 156 (1999), 254-281. | Zbl | MR | DOI

[25] L. Hörmander, Hypoelliptic second order differential equations. Acta Mathematica 119.1 (1967) 147-171. | Zbl | MR | DOI

[26] P.-E. Jabin, H.-Y. Lin, E. Tadmor, Commutator Method for Averaging Lemmas. | arXiv

[27] P.-E. Jabin, H.-Y. Lin, E. Tadmor, Averaging Lemmas with inhomogeneous velocity fluxes. In preparation.

[28] P.-E. Jabin, B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging, Comm. Pure Appl. Math. 54 (9) (2001) 1096- 1109. | DOI | Zbl | MR

[29] K. Kunihiko, The Cauchy problem for Schrödinger type equations with variable coefficients. J. Math. Soc. Japan 50 (1998), no. 1, 179-202. | DOI | Zbl

[30] P.-L. Lions, B. Perthame, E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7 (1994), no. 1, 169-191. | Zbl | MR | DOI

[31] P.-L. Lions, B. Perthame, E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys. 163 (1994) 415-431 | Zbl | DOI

[32] N. Masmoudi, M. L. Tayeb, Diffusion limit of a semiconductor Boltzmann-Poisson system. SIAM Journal on Mathematical Analysis 38.6 (2007) 1788-1807. | Zbl | MR | DOI

[33] B. Perthame, Kinetic formulation of conservation laws. Oxford Lecture Series in Mathematics and Its Applications, 21. Oxford University Press, Oxford, (2002). | Zbl

[34] G. Staffilani, D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations 27 (2002), no. 7-8, 1337-1372 | DOI | Zbl

[35] E. M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., (1970). | Zbl

[36] L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Springer Science and Business Media, no. 1971, (2009).

[37] E. Tadmor, T. Tao, Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Comm. Pure Appl. Math. 60 (2007), no. 10, 1488-1521. | Zbl | MR | DOI

[38] M. Westdickenberg, Some new velocity averaging results. SIAM J. Math. Anal. 33 (2002), no. 5, 1007-1032. | DOI | MR | Zbl

Cité par Sources :