Non linear stability of spherical gravitational systems described by the Vlasov-Poisson equation
Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 18, 17 p.

Voir la notice de l'acte provenant de la source Numdam

In this work, we prove the nonlinear stability of galaxy models derived from the three dimensional gravitational Vlasov Poisson system, which is a canonical model in astrophysics to describe the dynamics of galactic clusters.

DOI : 10.5802/slsedp.14

Lemou, Mohammed 1

1 CNRS and IRMAR Université de Rennes 1 France
@article{SLSEDP_2011-2012____A18_0,
     author = {Lemou, Mohammed},
     title = {Non linear stability of spherical gravitational systems described by the {Vlasov-Poisson} equation},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:18},
     pages = {1--17},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2011-2012},
     doi = {10.5802/slsedp.14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.14/}
}
TY  - JOUR
AU  - Lemou, Mohammed
TI  - Non linear stability of spherical gravitational systems described by the Vlasov-Poisson equation
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:18
PY  - 2011-2012
SP  - 1
EP  - 17
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.14/
DO  - 10.5802/slsedp.14
LA  - en
ID  - SLSEDP_2011-2012____A18_0
ER  - 
%0 Journal Article
%A Lemou, Mohammed
%T Non linear stability of spherical gravitational systems described by the Vlasov-Poisson equation
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:18
%D 2011-2012
%P 1-17
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.14/
%R 10.5802/slsedp.14
%G en
%F SLSEDP_2011-2012____A18_0
Lemou, Mohammed. Non linear stability of spherical gravitational systems described by the Vlasov-Poisson equation. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Exposé no. 18, 17 p. doi : 10.5802/slsedp.14. http://geodesic.mathdoc.fr/articles/10.5802/slsedp.14/

[1] Aly J.-J., On the lowest energy state of a collisionless self-gravitating system under phase volume constraints. MNRAS 241 (1989), 15. | Zbl | MR

[2] Antonov, A. V., Remarks on the problem of stability in stellar dynamics. Soviet Astr., AJ., 4, 859-867 (1961). | MR

[3] Antonov, A. V., Solution of the problem of stability of a stellar system with the Emden density law and spherical velocity distribution. J. Leningrad Univ. Se. Mekh. Astro. 7, 135-146 (1962).

[4] Arsen’ev, A. A., Global existence of a weak solution of Vlasov’s system of equations, U.S.S.R. Computational Math. and Math. Phys. 15 (1975), 131–141. | Zbl

[5] Batt, J.; Faltenbacher, W.; Horst, E., Stationary spherically symmetric models in stellar dynamics, Arch. Rat. Mech. Anal. 93, 159-183 (1986). | Zbl | MR

[6] Binney, J.; Tremaine, S., Galactic Dynamics, Princeton University Press, 1987. | Zbl

[7] Diperna, R. J.; Lions, P.-L., Global weak solutions of kinetic equations, Rend. Sem. Mat. Univ. Politec. Torino 46 (1988), no. 3, 259–288 (1990). | Zbl | MR

[8] Diperna, R. J.; Lions, P.-L., Solutions globales d’équations du type Vlasov-Poisson, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 12, 655–658. | Zbl | MR

[9] Dolbeault, J.; Sánchez, Ó.; Soler, J., Asymptotic behaviour for the Vlasov-Poisson system in the stellar-dynamics case, Arch. Ration. Mech. Anal. 171 (2004), no. 3, 301–327. | Zbl | MR

[10] Doremus, J. P.; Baumann, G.; Feix, M. R., Stability of a Self Gravitating System with Phase Space Density Function of Energy and Angular Momentum, Astronomy and Astrophysics 29 (1973), 401.

[11] Fridmann, A. M.; Polyachenko, V. L., Physics of gravitating systems, Springer-Verlag, 1984. | Zbl

[12] Gardner, C.S., Bound on the energy available from a plasma, Phys. Fluids 6, 1963, 839-840. | MR

[13] Gillon, D.; Cantus, M.; Doremus, J. P.; Baumann, G., Stability of self-gravitating spherical systems in which phase space density is a function of energy and angular momentum, for spherical perturbations, Astronomy and Astrophysics 50 (1976), no. 3, 467–470. | MR

[14] Guo, Y., Variational method for stable polytropic galaxies, Arch. Rat. Mech. Anal. 130 (1999), 163-182. | Zbl | MR

[15] Guo, Y.; Lin, Z., Unstable and stable galaxy models, Comm. Math. Phys. 279 (2008), no. 3, 789–813. | Zbl | MR

[16] Guo, Y.; Rein, G., Stable steady states in stellar dynamics, Arch. Rat. Mech. Anal. 147 (1999), 225–243. | Zbl | MR

[17] Guo, Y.; Rein, G., Isotropic steady states in galactic dynamics, Comm. Math. Phys. 219 (2001), 607–629. | Zbl | MR

[18] Guo, Y., On the generalized Antonov’s stability criterion. Contemp. Math. 263, 85-107 (2000) | Zbl | MR

[19] Guo, Y.; Rein, G., A non-variational approach to nonlinear Stability in stellar dynamics applied to the King model, Comm. Math. Phys., 271, 489-509 (2007). | Zbl | MR

[20] Hörmander, L, An Introduction to Complex Analysis in Several Variables (3rd Edition ed.), North-Holland, Amsterdam (1990). | Zbl | MR

[21] Hörmander, L., L2 estimates and existence theorems for the ¯ operator, Acta Math. 113 (1965), 89–152. | Zbl

[22] Horst, E.; Hunze, R., Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation, Math. Methods Appl. Sci. 6 (1984), no. 2, 262–279. | Zbl | MR

[23] Illner, R.; Neunzert, H., An existence theorem for the unmodified Vlasov equation, Math. Methods Appl. Sci. 1 (1979), no. 4, 530–544. | Zbl | MR

[24] Kandrup, H. E.; Sygnet, J. F., A simple proof of dynamical stability for a class of spherical clusters. Astrophys. J. 298 (1985), no. 1, part 1, 27–33. | MR

[25] Kavian, O., Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Mathématiques & Applications (Berlin), 13. Springer-Verlag, Paris, 1993. | Zbl | MR

[26] Lemou, M.; Méhats, F.; Raphaël, P., Orbital stability and singularity formation for Vlasov-Poisson systems. C. R. Math. Acad. Sci. Paris 341 (2005), no. 4, 269–274. | Zbl | MR

[27] Lemou, M.; Méhats, F.; Raphaël, P., On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov-Poisson system, Arch. Rat. Mech. Anal. 189 (2008), no. 3, 425–468. | Zbl | MR

[28] Lemou, M.; Méhats, F,; Raphaël, P., Stable ground states for the relativistic gravitational Vlasov-Poisson system, Comm. Partial Diff. Eq. 34 (2009), no. 7, 703–721. | Zbl | MR

[29] Lemou, M.; Méhats, F.; Raphaël, P., A new variational approach to the stability of gravitational systems. C. R. Math. Acad. Sci. Paris 347 (2009), no. 4, 979–984. | Zbl | MR

[30] Lemou, M.; Méhats, F.; Raphaël, P., A new variational approach to the stability of gravitational systems. Comm. Math. Phys. 302 (2011), 161-224. | MR

[31] Lemou, M.; Méhats, F.; Raphaël, P.,Orbital stability of spherical galactic models. To appear in Invent. Math. | Zbl | MR

[32] Lieb, E. H.; Loss, Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001. | Zbl | MR

[33] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145. | Zbl | MR | mathdoc-id

[34] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 4, 223–283. | Zbl | MR | mathdoc-id

[35] Lions, P.-L.; Perthame, B., Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math. 105 (1991), no. 2. | Zbl | MR

[36] Lynden-Bell, D., The Hartree-Fock exchange operator and the stability of galaxies, Mon. Not. R. Astr. Soc. 144, 1969, 189–217.

[37] Marchioro, C.; Pulvirenti, M., Some considerations on the nonlinear stability of stationary planar Euler flows, Comm. Math. Phys. 100 (1985), no. 3, 343–354. | Zbl | MR

[38] Marchioro, C.; Pulvirenti, M., A note on the nonlinear stability of a spatially symmetric Vlasov-Poisson flow, Math. Methods Appl. Sci. 8 (1986), no. 2, 284Ð288. | Zbl | MR

[39] Mouhot, C.; Villani, C. Landau damping, J. Math. Phys. 51 (2010), no. 1, 015204. | Zbl | MR

[40] Mouhot, C.; Villani, C. On Landau damping, to appear in Acta Mathematica. | Zbl | MR

[41] Mossino, J., Inégalités isopérimétriques et applications en physique. (French) [Isoperimetric inequalities and applications to physics] Travaux en Cours. [Works in Progress] Hermann, Paris, 1984. | Zbl | MR

[42] Pfaffelmoser, K., Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eq. 95 (1992), 281-303. | Zbl | MR

[43] Sánchez, Ó.; Soler, J., Orbital stability for polytropic galaxies, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), no. 6, 781–802. | Zbl | MR | mathdoc-id

[44] Schaeffer, J., Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Part. Diff. Eq. 16 (1991), 1313-1335. | Zbl | MR

[45] Schaeffer, J., Steady States in Galactic Dynamics, Arch. Rational, Mech. Anal. 172 (2004), 1–19. | Zbl | MR

[46] Sygnet, J.-F.; Des Forets, G.; Lachieze-Rey, M.; Pellat, R., Stability of gravitational systems and gravothermal catastrophe in astrophysics, Astrophys. J. 276 (1984), no. 2, 737–745.

[47] Talenti, G., Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 3 (1976), no. 4, 697–718. | Zbl | MR | mathdoc-id

[48] Wan, Y. H.; Pulvirenti, M., Nonlinear Stability of Circular Vortex Patches, Comm. Math. Phys. 99 (1985), 435–450. | Zbl | MR

[49] Weinstein, M. I., Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), 472–491. | Zbl | MR

[50] Wiechen, H., Ziegler, H.J., Schindler, K. Relaxation of collisionless self gravitating matter: the lowest energy state, Mon. Mot. R. ast. Soc (1988) 223, 623-646. | Zbl

[51] Wolansky, G., On nonlinear stability of polytropic galaxies. Ann. Inst. Henri Poincaré, 16, 15-48 (1999). | Zbl | MR | mathdoc-id

Cité par Sources :