Self-similar solutions and critical spaces for the modified Korteweg-de Vries equation
Séminaire Laurent Schwartz — EDP et applications (2018-2019), Exposé no. 4, 15 p.

Voir la notice de l'acte provenant de la source Numdam

We present some results obtained in collaboration with Simão Correia (University of Lisbon) and Luis Vega (University of Bilbao), regarding the understanding of self-similar solutions for the modified Korteweg-de Vries equation (mKdV). We obtain the description of self-similar solutions in Fourier space, and we also prove a local well-posedness result in a critical space where self-similar solutions live. As a consequence, we can study the flow of (mKdV) around self-similar solutions: in particular, we give an asymptotic description of small solutions as t+ and construct solutions with a prescribed blow up behavior as t0.

Publié le :
DOI : 10.5802/slsedp.130

Côte, Raphaël 1

1 Université de Strasbourg CNRS, IRMA UMR 7501 F-67000 Strasbourg, France
@article{SLSEDP_2018-2019____A4_0,
     author = {C\^ote, Rapha\"el},
     title = {Self-similar solutions and critical spaces for {the~modified~Korteweg-de} {Vries} equation},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:4},
     pages = {1--15},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2018-2019},
     doi = {10.5802/slsedp.130},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.130/}
}
TY  - JOUR
AU  - Côte, Raphaël
TI  - Self-similar solutions and critical spaces for the modified Korteweg-de Vries equation
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:4
PY  - 2018-2019
SP  - 1
EP  - 15
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.130/
DO  - 10.5802/slsedp.130
LA  - en
ID  - SLSEDP_2018-2019____A4_0
ER  - 
%0 Journal Article
%A Côte, Raphaël
%T Self-similar solutions and critical spaces for the modified Korteweg-de Vries equation
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:4
%D 2018-2019
%P 1-15
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.130/
%R 10.5802/slsedp.130
%G en
%F SLSEDP_2018-2019____A4_0
Côte, Raphaël. Self-similar solutions and critical spaces for the modified Korteweg-de Vries equation. Séminaire Laurent Schwartz — EDP et applications (2018-2019), Exposé no. 4, 15 p. doi : 10.5802/slsedp.130. http://geodesic.mathdoc.fr/articles/10.5802/slsedp.130/

[1] V. Banica and L. Vega. Evolution of polygonal lines by the binormal flow. , 2018. | 1807.06948 class='badge bg-secondary rounded-pill ref-badge extid-badge'>arXiv

[2] Fernando Bernal-Vilchis and Pavel I. Naumkin. Self-similar asymptotics for solutions to the intermediate long wave equation. J. Evol. Equ., 2019. To appear. | MR | Zbl | DOI

[3] Simão Correia, Raphaël Côte, and Luis Vega. Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation. , 2018. | MR | DOI | 1807.02302 class='badge bg-secondary rounded-pill ref-badge extid-badge'>arXiv

[4] Simão Correia, Raphaël Côte, and Luis Vega. Self-similar dynamics for the modified Korteweg-de Vries equation. , 2019. | DOI | 1904.04524 class='badge bg-secondary rounded-pill ref-badge extid-badge'>arXiv

[5] P. A. Deift and X. Zhou. Asymptotics for the Painlevé II equation. Comm. Pure Appl. Math., 48(3):277–337, 1995. | Zbl | DOI

[6] A. S. Fokas and M. J. Ablowitz. On the initial value problem of the second Painlevé transcendent. Comm. Math. Phys., 91(3):381–403, 1983. | Zbl | DOI

[7] Athanassios S. Fokas, Alexander R. Its, Andrei A. Kapaev, and Victor Yu. Novokshenov. Painlevé transcendents. The Riemann-Hilbert approach, volume 128 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2006. | Zbl

[8] Pierre Germain, Fabio Pusateri, and Frédéric Rousset. Asymptotic stability of solitons for mKdV. Adv. Math., 299:272–330, 2016. | MR | Zbl | DOI

[9] R.E. Goldstein and D.M. Petrich. Soliton’s, Euler’s equations, and vortex patch dynamics. Phys. Rev. Lett., 69(4):555–558, 1992. | MR | Zbl | DOI

[10] Axel Grünrock and Luis Vega. Local well-posedness for the modified KdV equation in almost critical H r s ^-spaces. Trans. Amer. Math. Soc., 361:5681–5694, 2009. | MR | Zbl | DOI

[11] Benjamin Harrop-Griffiths. Long time behavior of solutions to the mKdV. Comm. Partial Differential Equations, 41(2):282–317, 2016. | MR | Zbl | DOI

[12] S. P. Hastings and J. B. McLeod. A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal., 73(1):31–51, 1980. | Zbl | DOI

[13] Nakao Hayashi and Pavel Naumkin. On the modified Korteweg-de Vries equation. Math. Phys. Anal. Geom., 4(3):197–227, 2001. | Zbl | DOI

[14] Nakao Hayashi and Pavel I. Naumkin. Large time behavior of solutions for the modified Korteweg-de Vries equation. Internat. Math. Res. Notices, (8):395–418, 1999. | Zbl | DOI

[15] Tosio Kato. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. In Studies in applied mathematics, volume 8 of Adv. Math. Suppl. Stud., pages 93–128. Academic Press, New York, 1983. | Zbl

[16] Carlos E. Kenig, Gustavo Ponce, and Luis Vega. Well-posedness and scattering result for the generalized Korteweg-De Vries equation via contraction principle. Comm. Pure Appl. Math., 46:527–620, 1993. | MR | Zbl | DOI

[17] Carlos E. Kenig, Gustavo Ponce, and Luis Vega. On the concentration of blow up solutions for the generalized KdV equation critical in L 2 . In Nonlinear wave equations (Providence, RI, 1998), volume 263 of Contemp. Math., pages 131–156. Amer. Math. Soc., Providence, RI, 2000. | Zbl | DOI

[18] Yvan Martel and Frank Merle. A Liouville theorem for the critical generalized Korteweg-de Vries equation. J. Math. Pures Appl. (9), 79:339–425, 2000. | MR | Zbl | DOI

[19] G. Perelman and L. Vega. Self-similar planar curves related to modified Korteweg-de Vries equation. J. Differential Equations, 235(1):56–73, 2007. | MR | Zbl | DOI

Cité par Sources :