Solution to the semilinear wave equation with a pyramid-shaped blow-up surface
Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 6, 13 p.

Voir la notice de l'acte provenant de la source Numdam

We consider the semilinear wave equation with subconformal power nonlinearity in two space dimensions. We construct a finite-time blow-up solution with an isolated characteristic blow-up point at the origin, and a blow-up surface which is centered at the origin and has the shape of a stylized pyramid, whose edges follow the bisectrices of the axes in 2 . The blow-up surface is differentiable outside the bisectrices. As for the asymptotic behavior in similarity variables, the solution converges to the classical one-dimensional soliton outside the bisectrices. On the bisectrices outside the origin, it converges (up to a subsequence) to a genuinely two-dimensional stationary solution, whose existence is a by-product of the proof. At the origin, it behaves like the sum of 4 solitons localized on the two axes, with opposite signs for neighbors.

This is the first example of a blow-up solution with a characteristic point in higher dimensions, showing a really two-dimensional behavior. Moreover, the points of the bisectrices outside the origin give us the first example of non-characteristic points where the blow-up surface is non-differentiable.

This note gives only the main ideas. For details, see [52.

Publié le :
DOI : 10.5802/slsedp.104

Merle, Frank 1 ; Zaag, Hatem 2

1 Université de Cergy Pontoise Département de mathématiques 2 avenue Adolphe Chauvin BP 222 95302 Cergy Pontoise cedex France
2 Université Paris 13, Institut Galilée Laboratoire Analyse, Géométrie et Applications, CNRS UMR 7539 99 avenue J.B. Clément 93430 Villetaneuse France
@article{SLSEDP_2016-2017____A6_0,
     author = {Merle, Frank and Zaag, Hatem},
     title = {Solution to the semilinear wave equation with a~pyramid-shaped blow-up surface},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:6},
     pages = {1--13},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2016-2017},
     doi = {10.5802/slsedp.104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/slsedp.104/}
}
TY  - JOUR
AU  - Merle, Frank
AU  - Zaag, Hatem
TI  - Solution to the semilinear wave equation with a pyramid-shaped blow-up surface
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:6
PY  - 2016-2017
SP  - 1
EP  - 13
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/slsedp.104/
DO  - 10.5802/slsedp.104
LA  - en
ID  - SLSEDP_2016-2017____A6_0
ER  - 
%0 Journal Article
%A Merle, Frank
%A Zaag, Hatem
%T Solution to the semilinear wave equation with a pyramid-shaped blow-up surface
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:6
%D 2016-2017
%P 1-13
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/slsedp.104/
%R 10.5802/slsedp.104
%G en
%F SLSEDP_2016-2017____A6_0
Merle, Frank; Zaag, Hatem. Solution to the semilinear wave equation with a pyramid-shaped blow-up surface. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 6, 13 p. doi : 10.5802/slsedp.104. http://geodesic.mathdoc.fr/articles/10.5802/slsedp.104/

[1] S. Alinhac. Blowup for nonlinear hyperbolic equations, volume 17 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA, 1995. | Zbl | DOI

[2] C. Antonini and F. Merle. Optimal bounds on positive blow-up solutions for a semilinear wave equation. Internat. Math. Res. Notices, (21):1141–1167, 2001. | Zbl | DOI

[3] P. Bizoń. Threshold behavior for nonlinear wave equations. J. Nonlinear Math. Phys., 8(suppl.):35–41, 2001. Nonlinear evolution equations and dynamical systems (Kolimbary, 1999). | MR | DOI

[4] P. Bizoń, T. Chmaj, and N. Szpak. Dynamics near the threshold for blowup in the one-dimensional focusing nonlinear Klein-Gordon equation. J. Math. Phys., 52(10):103703, 11, 2011. | MR | DOI | Zbl

[5] P. Bizoń, T. Chmaj, and Z. Tabor. On blowup for semilinear wave equations with a focusing nonlinearity. Nonlinearity, 17(6):2187–2201, 2004. | MR | DOI | Zbl

[6] P. Bizoń and A. Zenginoğlu. Universality of global dynamics for the cubic wave equation. Nonlinearity, 22(10):2473–2485, 2009. | MR | DOI | Zbl

[7] A. Bressan. On the asymptotic shape of blow-up. Indiana Univ. Math. J., 39(4):947–960, 1990. | Zbl | DOI

[8] A. Bressan. Stable blow-up patterns. J. Differential Equations, 98(1):57–75, 1992. | Zbl | DOI | MR

[9] J. Bricmont and A. Kupiainen. Universality in blow-up for nonlinear heat equations. Nonlinearity, 7(2):539–575, 1994. | MR | DOI | Zbl

[10] L. A. Caffarelli and A. Friedman. Differentiability of the blow-up curve for one-dimensional nonlinear wave equations. Arch. Rational Mech. Anal., 91(1):83–98, 1985. | MR | DOI | Zbl

[11] L. A. Caffarelli and A. Friedman. The blow-up boundary for nonlinear wave equations. Trans. Amer. Math. Soc., 297(1):223–241, 1986. | MR | DOI | Zbl

[12] R. Côte. Construction of solutions to the subcritical gKdV equations with a given asymptotical behavior. J. Funct. Anal., 241(1):143–211, 2006. | MR | DOI | Zbl

[13] R. Côte. Construction of solutions to the L 2 -critical KdV equation with a given asymptotic behaviour. Duke Math. J., 138(3):487–531, 2007. | MR | DOI | Zbl

[14] R. Côte, Y. Martel, and F. Merle. Construction of multi-soliton solutions for the L 2 -supercritical gKdV and NLS equations. Rev. Mat. Iberoamericana, 27(1):273–302, 2011. | MR | DOI | Zbl

[15] R. Côte and H. Zaag. Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension. Comm. Pure Appl. Math., 66(10):1541–1581, 2013. | MR | DOI | Zbl

[16] R. Donninger, W. Schlag, and A. Soffer. On pointwise decay of linear waves on a Schwarzschild black hole background. Comm. Math. Phys., 309(1):51–86, 2012. | MR | DOI | Zbl

[17] R. Donninger and B. Schörkhuber. Stable self-similar blow up for energy subcritical wave equations. Dyn. Partial Differ. Equ., 9(1):63–87, 2012. | MR | DOI | Zbl

[18] R. Donninger and B. Schörkhuber. Stable blow up dynamics for energy supercritical wave equations. Trans. Amer. Math. Soc., 366(4):2167–2189, 2014. | MR | DOI | Zbl

[19] Thomas Duyckaerts, Carlos Kenig, and Frank Merle. Classification of radial solutions of the focusing, energy-critical wave equation. Camb. J. Math., 1(1):75–144, 2013. | Zbl | DOI | MR

[20] M. A. Ebde and H. Zaag. Construction and stability of a blow up solution for a nonlinear heat equation with a gradient term. Se MA J., (55):5–21, 2011. | MR | DOI | Zbl

[21] T. Ghoul and N. Masmoudi. Stability of infinite time aggregation for the critical Patlak-Keller-Segel model in 2 dimension. Submitted, 2016.

[22] M. A. Hamza and H. Zaag. A Lyapunov functional and blow-up results for a class of perturbations for semilinear wave equations in the critical case. J. Hyperbolic Differ. Equ., 9:195–221, 2012. | MR | DOI | Zbl

[23] M. A. Hamza and H. Zaag. A Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations. Nonlinearity, 25(9):2759–2773, 2012. | MR | DOI | Zbl

[24] M. A. Hamza and H. Zaag. Blow-up behavior for the Klein–Gordon and other perturbed semilinear wave equations. Bull. Sci. Math., 137(8):1087–1109, 2013. | MR | DOI | Zbl

[25] M. A. Hamza and H. Zaag. Blow-up results for semilinear wave equations in the super-conformal case. Discrete Contin. Dyn. Syst. Ser. B, 18(9):2315–2329, 2013. | Zbl | DOI | MR

[26] R. Killip, B. Stovall, and M. Vişan. Blowup behaviour for the nonlinear Klein–Gordon equation. Math. Ann., 358(1-2):289–350, 2014. | MR | DOI | Zbl

[27] R. Killip and M. Vişan. Smooth solutions to the nonlinear wave equation can blow up on Cantor sets. 2011. | arXiv

[28] H. A. Levine. Instability and nonexistence of global solutions to nonlinear wave equations of the form Pu tt =-Au+(u). Trans. Amer. Math. Soc., 192:1–21, 1974. | MR | DOI

[29] F. Mahmoudi, N. Nouaili, and H. Zaag. Construction of a stable periodic solution to a semilinear heat equation with a prescribed profile. Nonlinear Anal., 131:300–324, 2016. | Zbl | DOI | MR

[30] Y. Martel. Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations. Amer. J. Math., 127(5):1103–1140, 2005. | MR | DOI | Zbl

[31] Y. Martel. Multi-solitons and large time dynamics of some nonlinear dispersive equations. Bol. Soc. Esp. Mat. Apl. Se MA, (33):79–111, 2005. | Zbl

[32] Y. Martel and F. Merle. Multi solitary waves for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 23(6):849–864, 2006. | Zbl | DOI | mathdoc-id

[33] Y. Martel, F. Merle, and T.P. Tsai. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations. Comm. Math. Phys., 231(2):347–373, 2002. | Zbl | DOI

[34] Y. Martel, F. Merle, and T.P. Tsai. Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations. Duke Math. J., 133(3):405–466, 2006. | Zbl | DOI

[35] N. Masmoudi and H. Zaag. Blow-up profile for the complex Ginzburg-Landau equation. J. Funct. Anal., 255(7):1613–1666, 2008. | MR | DOI | Zbl

[36] F. Merle. Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity. Comm. Math. Phys., 129(2):223–240, 1990. | Zbl | DOI

[37] F. Merle. Solution of a nonlinear heat equation with arbitrarily given blow-up points. Comm. Pure Appl. Math., 45(3):263–300, 1992. | MR | DOI | Zbl

[38] F. Merle, P. Raphaël, and I. Rodnianski. Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent. Math., 193(2):249–365, 2013. | Zbl | DOI

[39] F. Merle and H. Zaag. Stabilité du profil à l’explosion pour les équations du type u t =Δu+|u| p-1 u. C. R. Acad. Sci. Paris Sér. I Math., 322(4):345–350, 1996. | Zbl

[40] F. Merle and H. Zaag. Stability of the blow-up profile for equations of the type u t =Δu+|u| p-1 u. Duke Math. J., 86(1):143–195, 1997. | MR | DOI | Zbl

[41] F. Merle and H. Zaag. Determination of the blow-up rate for the semilinear wave equation. Amer. J. Math., 125:1147–1164, 2003. | MR | DOI | Zbl

[42] F. Merle and H. Zaag. Blow-up rate near the blow-up surface for semilinear wave equations. Internat. Math. Res. Notices, (19):1127–1156, 2005. | Zbl | DOI

[43] F. Merle and H. Zaag. Determination of the blow-up rate for a critical semilinear wave equation. Math. Annalen, 331(2):395–416, 2005. | MR | DOI | Zbl

[44] F. Merle and H. Zaag. Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal., 253(1):43–121, 2007. | MR | DOI | Zbl

[45] F. Merle and H. Zaag. Openness of the set of non characteristic points and regularity of the blow-up curve for the 1 d semilinear wave equation. Comm. Math. Phys., 282:55–86, 2008. | MR | DOI | Zbl

[46] F. Merle and H. Zaag. On characteristic points at blow-up for a semilinear wave equation in one space dimension. In Singularities in Nonlinear Problems, Kyoto. 2009. | MR | DOI | Zbl

[47] F. Merle and H. Zaag. Isolatedness of characteristic points for a semilinear wave equation in one space dimension. In Séminaire sur les Équations aux Dérivées Partielles, 2009–2010. École Polytech., Palaiseau, 2010. Exp. No. 11, 10p.

[48] F. Merle and H. Zaag. Blow-up behavior outside the origin for a semilinear wave equation in the radial case. Bull. Sci. Math., 135(4):353–373, 2011. | MR | DOI | Zbl

[49] F. Merle and H. Zaag. Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension. Amer. J. Math., 134(3):581–648, 2012. | MR | DOI | Zbl

[50] F. Merle and H. Zaag. Isolatedness of characteristic points for a semilinear wave equation in one space dimension. Duke Math. J., 161(15):2837–2908, 2012. | MR | DOI | Zbl

[51] F. Merle and H. Zaag. On the stability of the notion of non-characteristic point and blow-up profile for semilinear wave equations. Comm. Math. Phys., pages 1–34, 2015. | MR | DOI | Zbl

[52] F. Merle and H. Zaag. Blow-up solutions to the semilinear wave equation with a nearly pyramid-shaped blow-up surface. Submitted, 2016. | DOI

[53] F. Merle and H. Zaag. Dynamics near explicit stationary solutions in similarity variables for solutions of a semilinear wave equation in higher dimensions. Trans. Amer. Math. Soc., 368(1):27–87, 2016. | MR | DOI | Zbl

[54] F. Merle and H. Zaag. Dynamics near explicit stationary solutions in similarity variables for solutions of a semilinear wave equation in higher dimensions. Trans. Amer. Math. Soc., 368(1):27–87, 2016. | MR | DOI | Zbl

[55] M. Ming, F. Rousset, and N. Tzvetkov. Multi-solitons and related solutions for the water-waves system. SIAM J. Math. Anal., 47(1):897–954, 2015. | MR | DOI | Zbl

[56] V. T. Nguyen and H. Zaag. Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2016. to appear, . | arXiv | Zbl

[57] N. Nouaili and H. Zaag. Profile for a Simultaneously Blowing up Solution to a Complex Valued Semilinear Heat Equation. Comm. Partial Differential Equations, 40(7):1197–1217, 2015. | MR | DOI | Zbl

[58] P. Raphaël and R. Schweyer. On the stability of critical chemotactic aggregation. Math. Ann., 359(1-2):267–377, 2014. | MR | DOI | Zbl

[59] R. Schweyer. Type II blow-up for the four dimensional energy critical semi linear heat equation. J. Funct. Anal., 263(12):3922–3983, 2012. | MR | DOI | Zbl

[60] S. Tayachi and H. Zaag. Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term. Submitted, , 2015. | arXiv | MR | DOI | Zbl

[61] S. Tayachi and H. Zaag. Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term. In C. Dogbe, editor, Actes du colloque EDP-Normandie, pages 119–136, 2015. | MR | DOI

[62] Martel Y. and Raphaël P. Strongly interacting blow up bubbles for the mass critical nls. Preprint, , 2015. | arXiv | DOI

[63] H. Zaag. Blow-up results for vector-valued nonlinear heat equations with no gradient structure. Ann. Inst. H. Poincaré Anal. Non Linéaire, 15(5):581–622, 1998. | MR | DOI | mathdoc-id | Zbl

[64] H. Zaag. On the regularity of the blow-up set for semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 19(5):505–542, 2002. | MR | DOI | mathdoc-id | Zbl

[65] H. Zaag. One dimensional behavior of singular N dimensional solutions of semilinear heat equations. Comm. Math. Phys., 225(3):523–549, 2002. | MR | DOI | Zbl

[66] H. Zaag. Regularity of the blow-up set and singular behavior for semilinear heat equations. In Mathematics & mathematics education (Bethlehem, 2000), pages 337–347. World Sci. Publishing, River Edge, NJ, 2002. | Zbl | DOI

[67] H. Zaag. Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation. Duke Math. J., 133(3):499–525, 2006. | MR | DOI | Zbl

Cité par Sources :