Elliptic Fibrations of a certain K3 surface of the Apéry–Fermi pencil
[Fibrations elliptiques d’une certaine surface K3 du pinceau d’Apéry–Fermi]
Publications mathématiques de Besançon. Algèbre et théorie des nombres (2022), pp. 5-36.

Voir la notice de l'article provenant de la source Numdam

We explain how to obtain from Kneser–Nishiyama’s method all the elliptic fibrations of the singular (i.e. of Picard number 20) K3 surface Y 10 of discriminant 72 and belonging to the Apéry–Fermi pencil (Y k ). The case of its extremal elliptic fibrations is developped together with Weierstrass equations, noticing that two of them are obtained by 3-isogeny from extremal fibrations of the K3 surface Y 2 of discriminant 8.

On montre comment la méthode de Kneser–Nishiyama permet d’obtenir toutes les fibrations elliptiques de la surface K3 singulière (i.e. de nombre de Picard 20) de discriminant 72, notée Y 10 , appartenant au pinceau (Y k ) de surfaces K3 d’Apéry–Fermi. Les fibrations elliptiques extrémales sont en outre données avec des équations de Weierstrass. On remarque que deux d’entre elles sont obtenues par 3-isogénie à partir de fibrations extrémales de la surface Y 2 de discriminant 8.

Reçu le :
Publié le :
DOI : 10.5802/pmb.44
Classification : 11F23, 11G05, 14J28, 14J27
Keywords: Niemeier Lattices, Kneser–Nishiyama Method for Elliptic Fibrations of $K3$ Surfaces, Elkies r-neighbor Method for Weierstrass Equations

Bertin, Marie José 1 ; Lecacheux, Odile 1

1 Sorbonne Université, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Case 247, 4 Place Jussieu, 75252 PARIS, Cedex 85, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{PMB_2022____5_0,
     author = {Bertin, Marie Jos\'e and Lecacheux, Odile},
     title = {Elliptic {Fibrations} of a certain $K3$ surface of the {Ap\'ery{\textendash}Fermi} pencil},
     journal = {Publications math\'ematiques de Besan\c{c}on. Alg\`ebre et th\'eorie des nombres},
     pages = {5--36},
     publisher = {Presses universitaires de Franche-Comt\'e},
     year = {2022},
     doi = {10.5802/pmb.44},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/pmb.44/}
}
TY  - JOUR
AU  - Bertin, Marie José
AU  - Lecacheux, Odile
TI  - Elliptic Fibrations of a certain $K3$ surface of the Apéry–Fermi pencil
JO  - Publications mathématiques de Besançon. Algèbre et théorie des nombres
PY  - 2022
SP  - 5
EP  - 36
PB  - Presses universitaires de Franche-Comté
UR  - http://geodesic.mathdoc.fr/articles/10.5802/pmb.44/
DO  - 10.5802/pmb.44
LA  - en
ID  - PMB_2022____5_0
ER  - 
%0 Journal Article
%A Bertin, Marie José
%A Lecacheux, Odile
%T Elliptic Fibrations of a certain $K3$ surface of the Apéry–Fermi pencil
%J Publications mathématiques de Besançon. Algèbre et théorie des nombres
%D 2022
%P 5-36
%I Presses universitaires de Franche-Comté
%U http://geodesic.mathdoc.fr/articles/10.5802/pmb.44/
%R 10.5802/pmb.44
%G en
%F PMB_2022____5_0
Bertin, Marie José; Lecacheux, Odile. Elliptic Fibrations of a certain $K3$ surface of the Apéry–Fermi pencil. Publications mathématiques de Besançon. Algèbre et théorie des nombres (2022), pp. 5-36. doi : 10.5802/pmb.44. http://geodesic.mathdoc.fr/articles/10.5802/pmb.44/

[1] Bertin, Marie José Mahler’s measure and L-series of K3 hypersurfaces, Mirror Symmetry V, Proceedings of the BIRS Workshop on Calabi–Yau Varieties and Mirror Symmetry (AMS/IP Studies in Advanced Mathematics), Volume 38, American Mathematical Society, 2006, pp. 3-18 | Zbl | MR

[2] Bertin, Marie José The Mahler measure and L-series of a singular K3 surface (2008) (https://arxiv.org/abs/0803.0413)

[3] Bertin, Marie José Measure de Mahler et série L d’une surface K3 singulière, Actes de la Conférence “Fonctions L et Arithmétique” (Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres), Volume 2010, Laboratoire de Mathématique de Besançon, 2010, pp. 5-28 | Zbl | MR

[4] Bertin, Marie José; Garbagnati, Alice; Hortsch, Ruthi; Lecacheux, Odile; Mase, Makiko; Salgado, Cecília; Whitcher, Ursula Classifications of seliptic fibrations of a singular K3 surface, Women in numbers Europe, Research directions in number theory (Association for Women in Mathematics Series), Volume 2, Springer, 2015, pp. 17-49 | Zbl | DOI

[5] Bertin, Marie José; Lecacheux, Odile Elliptic fibrations on the modular surface associated to Γ 1 (8), Arithmetic and geometry of K3 surfaces and Calabi–Yau threefolds (Fields Institute Communications), Volume 67, Springer, 2013, pp. 153-199 | MR | DOI

[6] Bertin, Marie José; Lecacheux, Odile Apéry–Fermi pencil of K3 Surfaces and 2-isogenies, J. Math. Soc. Japan, Volume 72 (2020) no. 2, pp. 599-637 | Zbl

[7] Bourbaki, Nicolas Groupes et algèbres de Lie, Chap. 4, 5, 6, Masson, 1981

[8] Boyd, D. W. Personal communication

[9] Braun, Andreas P.; Kimura, Yusuke; Watari, Taizan On the Classification of Elliptic Fibrations modulo Isomorphism on K3 Surfaces with large Picard Number (2013) (https://arxiv.org/abs/1312.4421)

[10] Cohen, Henri A course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer, 2000

[11] Conway, John H.; Sloane, Neil J. A. Certain Important Lattices and Their Properties and Enumeration of Unimodular Lattices, Sphere Packings, Lattices and Groups (Grundlehren der Mathematischen Wissenschaften), Volume 1993, Springer, 1993, p. 94-131 and 406-413 | DOI

[12] Elkies, Noam; Kumar, Abhinav K3 Surfaces and Equations for Hilbert Modular Surfaces, Algebra Number Theory, Volume 8 (2014) no. 10, pp. 2297-2411 | MR | DOI | Zbl

[13] Festi, Dino; van Straten, Duco Bhabha scattering and a special pencil of K3 surfaces, Commun. Number Theory Phys., Volume 13 (2019) no. 2, pp. 463-485 | Zbl | MR | DOI

[14] Kodaira, Kunihiko On Compact Analytic Surfaces I-III, Ann. Math., Volume 71, 77, 78 (1960, 1963, 1963), p. 111-152, 563-626, 1-40 | Zbl | DOI

[15] Kumar, Abhinav Elliptic fibrations on a generic Jacobian Kummer Surface, J. Algebr. Geom., Volume 23 (2014) no. 4, pp. 599-667 | Zbl | MR | DOI

[16] Kuwata, Masato Maple Library Elliptic Surface Calculator (http://c-faculty.chuo-u.ac.jp/~kuwata/2012-13/Maple_resources/ESC.mpl)

[17] Martinet, Jacques Perfect lattices in Euclidean Spaces, Grundlehren der Mathematischen Wissenschaften, 327, Springer, 2003 | DOI

[18] Néron, André Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math., Inst. Hautes Étud. Sci., Volume 21 (1964), pp. 361-484 | Zbl | mathdoc-id

[19] Niemeier, Hans-Volker Definite quadratische Formen der Dimension 24 und Diskriminante 1, J. Number Theory, Volume 5 (1973), pp. 142-178 | MR | DOI | Zbl

[20] Nikulin, Vyacheslav V. Integral Symmetric bilinear Forms and some of their Applications, Izv. Math., Volume 14 (1980), pp. 103-167 | Zbl | DOI

[21] Nishiyama, Ken-ichi The Jacobian fibrations on some K3 surfaces and their Mordell–Weil groups, Jap. J. Math., Volume 22 (1996) no. 2, pp. 293-347 | Zbl | MR | DOI

[22] Piatetski-Shapiro, Ilya I.; Shafarevich, Igor R. Torelli’s theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 35 (1971), pp. 530-572

[23] Schütt, Matthias Personal communication

[24] Schütt, Matthias; Shioda, Tetsuji Elliptic surfaces, Algebraic geometry in East Asia – Seoul 2008 (Advanced Studies in Pure Mathematics), Volume 60, Mathematical Society of Japan, 2010, pp. 51-160 | Zbl | MR | DOI

[25] Shimada, Ichiro; Zhang, De-Qi Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces, Nagoya Math. J., Volume 161 (2001), pp. 23-54 | Zbl | MR | DOI

[26] Silverman, Joseph H. Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, 151, Springer, 1994 | DOI

[27] Silverman, Joseph H.; Tate, John Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer, 1992 | DOI

[28] Sterk, Hans Finiteness Results for Algebraic K3 Surfaces, Math. Z., Volume 180 (1985), pp. 507-513 | Zbl | MR | DOI

[29] Utsumi, Kazuki Weierstrass Equations for Jacobian Fibrations on a certain K3 Surface, Hiroshima Math. J., Volume 42 (2012) no. 3, pp. 355-383 | Zbl | MR

Cité par Sources :