Exact makespan minimization of unrelated parallel machines
Open Journal of Mathematical Optimization, Tome 2 (2021), article no. 2, 15 p.

Voir la notice de l'article provenant de la source Numdam

We study methods for the exact solution of the unrelated parallel machine problem with makespan minimization, generally denoted as R||C max . Our original application arises from the automotive assembly process where tasks needs to be distributed among several robots. This involves the solutions of several R||C max instances, which proved hard for a MILP solver since the makespan objective induces weak LP relaxation bounds. To improve these bounds and to enable the solution of larger instances, we propose a branch–and–bound method based on a Lagrangian relaxation of the assignment constraints. For this relaxation we derive a criterion for variable fixing and prove the zero duality gap property for the case of two parallel machines. Our computational studies indicate that the proposed algorithm is competitive with state-of-the-art methods on different types of instances. Moreover, the impact of each proposed feature is analysed.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ojmo.4
Keywords: unrelated parallel machine problem, makespan, variable fixing, binary knapsack, Lagrangian relaxation

Åblad, Edvin 1 ; Strömberg, Ann-Brith 2 ; Spensieri, Domenico 1

1 Fraunhofer-Chalmers Research Centre and Chalmers University of Technology, Gothenburg, Sweden
2 Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{OJMO_2021__2__A2_0,
     author = {\r{A}blad, Edvin and Str\"omberg, Ann-Brith and Spensieri, Domenico},
     title = {Exact makespan minimization of unrelated parallel machines},
     journal = {Open Journal of Mathematical Optimization},
     eid = {2},
     pages = {1--15},
     publisher = {Universit\'e de Montpellier},
     volume = {2},
     year = {2021},
     doi = {10.5802/ojmo.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/ojmo.4/}
}
TY  - JOUR
AU  - Åblad, Edvin
AU  - Strömberg, Ann-Brith
AU  - Spensieri, Domenico
TI  - Exact makespan minimization of unrelated parallel machines
JO  - Open Journal of Mathematical Optimization
PY  - 2021
SP  - 1
EP  - 15
VL  - 2
PB  - Université de Montpellier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/ojmo.4/
DO  - 10.5802/ojmo.4
LA  - en
ID  - OJMO_2021__2__A2_0
ER  - 
%0 Journal Article
%A Åblad, Edvin
%A Strömberg, Ann-Brith
%A Spensieri, Domenico
%T Exact makespan minimization of unrelated parallel machines
%J Open Journal of Mathematical Optimization
%D 2021
%P 1-15
%V 2
%I Université de Montpellier
%U http://geodesic.mathdoc.fr/articles/10.5802/ojmo.4/
%R 10.5802/ojmo.4
%G en
%F OJMO_2021__2__A2_0
Åblad, Edvin; Strömberg, Ann-Brith; Spensieri, Domenico. Exact makespan minimization of unrelated parallel machines. Open Journal of Mathematical Optimization, Tome 2 (2021), article  no. 2, 15 p. doi : 10.5802/ojmo.4. http://geodesic.mathdoc.fr/articles/10.5802/ojmo.4/

[1] Åblad, Edvin Intersection-free load balancing for industrial robots, Masters thesis, Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg (2016)

[2] Åblad, Edvin R||Cmax Solver, Fraunhofer-Chalmers Centre GitHub repository, 2021 (https://github.com/Fraunhofer-Chalmers-Centre/RCmax/releases/v1.0)

[3] Åblad, Edvin; Spensieri, Domenico; Bohlin, Robert; Carlson, Johan S. Intersection-free geometrical partitioning of multirobot stations for cycle time optimization, IEEE Trans. Autom. Sci. Eng., Volume 15 (2018) no. 2, pp. 842-851 | DOI

[4] Achterberg, Tobias; Koch, Thorsten; Martin, Alexander Branching rules revisited, Oper. Res. Lett., Volume 33 (2005) no. 1, pp. 42-54 | DOI | MR | Zbl

[5] Alvarez, Alejandro Marcos; Louveaux, Quentin; Wehenkel, Louis A machine learning-based approximation of strong branching, INFORMS J. Comput., Volume 29 (2017) no. 1, pp. 185-195 | DOI | MR | Zbl

[6] Bazaraa, Mokhtar S.; Sherali, Hanif D.; Shetty, C. M. Subgradient optimization methods, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons, 2006 | DOI

[7] Belgacem, Rachid; Amir, Abdessamad A new modified deflected subgradient method, J. King Saud Univ. Sci., Volume 30 (2018) no. 4, pp. 561-567 | DOI

[8] Berthold, Timo Heuristic algorithms in global MINLP solvers, Ph. D. Thesis, Technische Universität Berlin (2014), 366 pages

[9] Borba, Leonardo; Ritt, Marcus A heuristic and a branch-and-bound algorithm for the assembly line worker assignment and balancing problem, Comput. Oper. Res., Volume 45 (2014), pp. 87-96 | DOI | Zbl | MR

[10] Camerini, Paolo M.; Fratta, Luigi; Maffioli, Francesco On improving relaxation methods by modified gradient techniques, Nondifferentiable Optimization, Springer, 1975, pp. 26-34 | DOI | Zbl

[11] Conforti, Michele; Cornuejols, Gerard; Zambelli, Giacomo Integer Programming, Springer, 2014 | Zbl

[12] Fanjul-Peyro, Luis; Ruiz, Rubén Iterated greedy local search methods for unrelated parallel machine scheduling, Eur. J. Oper. Res., Volume 207 (2010) no. 1, pp. 55-69 | DOI | MR | Zbl

[13] Fischetti, Matteo; Lodi, Andrea Local branching, Math. Program., Volume 98 (2003) no. 1, pp. 23-47 | DOI | MR | Zbl

[14] Fischetti, Matteo; Toth, Paolo An additive bounding procedure for combinatorial optimization problems, Oper. Res., Volume 37 (1989) no. 2, pp. 319-328 | DOI | MR | Zbl

[15] Frangioni, Antonio; Necciari, Emiliano; Scutellà, Maria Grazia A multi-exchange neighborhood for minimum makespan parallel machine scheduling problems, J. Comb. Optim., Volume 8 (2004) no. 2, pp. 195-220 | DOI | MR | Zbl

[16] Gairing, Martin; Monien, Burkhard; Woclaw, Andreas A faster combinatorial approximation algorithm for scheduling unrelated parallel machines, International Colloquium on Automata, Languages, and Programming (Caires, Luís; Italiano, Giuseppe F.; Monteiro, Luís; Palamidessi, Catuscia; Yung, Moti, eds.) (Lecture Notes in Computer Science), Volume 3580, Springer (2005), pp. 828-839 | DOI | MR

[17] Gamrath, Gerald; Melchiori, Anna; Berthold, Timo; Gleixner, Ambros M; Salvagnin, Domenico Branching on multi-aggregated variables, Integration of AI and OR Techniques in Constraint Programming (Michel, Laurent, ed.) (Lecture Notes in Computer Science), Volume 9075, Springer (2015), pp. 141-156 | DOI | Zbl

[18] Ghirardi, Marco; Potts, Chris N. Makespan minimization for scheduling unrelated parallel machines: A recovering beam search approach, Eur. J. Oper. Res., Volume 165 (2005) no. 2, pp. 457-467 | DOI | Zbl

[19] Glass, Celia A.; Potts, Chris N.; Shade, P. Unrelated parallel machine scheduling using local search, Math. Comput. Modelling, Volume 20 (1994) no. 2, pp. 41-52 | DOI | Zbl

[20] Graham, Ronald L.; Lawler, Eugene L.; Lenstra, Jan Karel; Kan, A. H. G. Rinnooy Optimization and approximation in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics, Volume 5, Elsevier, 1979, pp. 287-326 | DOI | MR | Zbl

[21] Gurobi Optimization, LLC Gurobi Optimizer Reference Manual, 2020 (http://www.gurobi.com)

[22] Held, Michael; Wolfe, Philip; Crowder, Harlan P. Validation of subgradient optimization, Math. Program., Volume 6 (1974) no. 1, pp. 62-88 | DOI | MR | Zbl

[23] Horowitz, Ellis; Sahni, Sartaj Exact and approximate algorithms for scheduling nonidentical processors, J. Assoc. Comput. Mach., Volume 23 (1976) no. 2, pp. 317-327 | DOI | MR | Zbl

[24] Irnich, Stefan; Desaulniers, Guy; Desrosiers, Jacques; Hadjar, Ahmed Path-reduced costs for eliminating arcs in routing and scheduling, INFORMS J. Comput., Volume 22 (2010) no. 2, pp. 297-313 | DOI | MR | Zbl

[25] Jansen, Klaus; Porkolab, Lorant Improved Approximation Schemes for Scheduling Unrelated Parallel Machines, Math. Oper. Res., Volume 26 (2001) no. 2, pp. 324-338 | DOI | MR | Zbl

[26] Larsson, Torbjörn; Patriksson, Michael; Strömberg, Ann-Brith Ergodic, primal convergence in dual subgradient schemes for convex programming, Math. Program., Volume 86 (1999) no. 2, pp. 283-312 | DOI | MR | Zbl

[27] Lenstra, Jan Karel; Shmoys, David B.; Tardos, Éva Approximation algorithms for scheduling unrelated parallel machines, Math. Program., Volume 46 (1990) no. 1–3, pp. 259-271 | DOI | MR | Zbl

[28] Martello, Silvano; Pisinger, David; Toth, Paolo Dynamic Programming and Strong Bounds for the 0–1 Knapsack Problem, Manage. Sci., Volume 45 (1999) no. 3, pp. 414-424 | DOI | Zbl

[29] Martello, Silvano; Soumis, François; Toth, Paolo Exact and approximation algorithms for makespan minimization on unrelated parallel machines, Discrete Appl. Math., Volume 75 (1997) no. 2, pp. 169-188 | DOI | MR | Zbl

[30] Martello, Silvano; Toth, Paolo Knapsack Problems: Algorithms and Computer Implementations, John Wiley & Sons, 1990 (www.or.deis.unibo.it/kp/KnapsackProblems.pdf) | Zbl

[31] Mokotoff, Ethel Parallel machine scheduling problems: A survey, Asia-Pac. J. Oper. Res., Volume 18 (2001) no. 2, pp. 193-242 | MR | Zbl

[32] Mokotoff, Ethel; Chrétienne, Philippe A cutting plane algorithm for the unrelated parallel machine scheduling problem, Eur. J. Oper. Res., Volume 141 (2002) no. 3, pp. 515-525 | DOI | MR | Zbl

[33] Önnheim, Magnus; Gustavsson, Emil; Strömberg, Ann-Brith; Patriksson, Michael; Larsson, Torbjörn Ergodic, primal convergence in dual subgradient schemes for convex programming, II: the case of inconsistent primal problems, Math. Program., Volume 163 (2017) no. 1–2, pp. 57-84 | DOI | MR | Zbl

[34] Pisinger, David A minimal algorithm for the 0-1 knapsack problem, Oper. Res., Volume 45 (1997) no. 5, pp. 758-767 | DOI | MR | Zbl

[35] Polyak, Boris T. Minimization of unsmooth functionals, U.S.S.R. Comput. Math. Math. Phys., Volume 9 (1969) no. 3, pp. 14-29 | DOI | Zbl

[36] Posta, Marius; Ferland, Jacques A; Michelon, Philippe An exact method with variable fixing for solving the generalized assignment problem, Comput. Optim. Appl., Volume 52 (2012) no. 3, pp. 629-644 | DOI | MR | Zbl

[37] Sandi, Claudio Solution of the machine loading problem with binary variables, Combinatorial Programming: Methods and Applications (Roy, B., ed.) (NATO Advanced Study Institutes Series), Volume 19, Springer, 1975, pp. 371-378 | MR

[38] Sherali, Hanif D.; Ulular, Osman A primal-dual conjugate subgradient algorithm for specially structured linear and convex programming problems, Appl. Math. Optim., Volume 20 (1989) no. 1, pp. 193-221 | DOI | MR | Zbl

[39] van de Velde, Steef L. Duality-based algorithms for scheduling unrelated parallel machines, ORSA J. Comput., Volume 5 (1993) no. 2, pp. 192-205 | DOI | MR | Zbl

[40] Vazirani, Vijay V. Approximation Algorithms, Springer, 2003

[41] Vilà, Mariona; Pereira, Jordi A branch-and-bound algorithm for assembly line worker assignment and balancing problems, Comput. Oper. Res., Volume 44 (2014), pp. 105-114 | DOI | Zbl

[42] Wotzlaw, Andreas Scheduling Unrelated Parallel Machines—Algorithms, Complexity, and Performance, VDM Verlag, 2007

Cité par Sources :