Adaptive Cut Selection in Mixed-Integer Linear Programming
Open Journal of Mathematical Optimization, Tome 4 (2023), article no. 5, 28 p.

Voir la notice de l'article provenant de la source Numdam

Cutting plane selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017 and a neural network verification data set. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ojmo.25
Classification : 90C11
Keywords: Mixed-Integer Linear Programming, Cutting Plane Selection, Instance-Dependent Learning

Turner, Mark 1, 2 ; Koch, Thorsten 1, 2 ; Serrano, Felipe 3, 2 ; Winkler, Michael 4, 2

1 Chair of Software and Algorithms for Discrete Optimization, Institute of Mathematics, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
2 Zuse Institute Berlin, Department of Mathematical Optimization, Takustr. 7, 14195 Berlin
3 Cardinal Operations GmbH, Englerallee 19 14195 Berlin, Germany
4 Gurobi GmbH, Ulmenstr. 37-39, 60325 Frankfurt am Main, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{OJMO_2023__4__A5_0,
     author = {Turner, Mark and Koch, Thorsten and Serrano, Felipe and Winkler, Michael},
     title = {Adaptive {Cut} {Selection} in {Mixed-Integer} {Linear} {Programming}},
     journal = {Open Journal of Mathematical Optimization},
     eid = {5},
     pages = {1--28},
     publisher = {Universit\'e de Montpellier},
     volume = {4},
     year = {2023},
     doi = {10.5802/ojmo.25},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/ojmo.25/}
}
TY  - JOUR
AU  - Turner, Mark
AU  - Koch, Thorsten
AU  - Serrano, Felipe
AU  - Winkler, Michael
TI  - Adaptive Cut Selection in Mixed-Integer Linear Programming
JO  - Open Journal of Mathematical Optimization
PY  - 2023
SP  - 1
EP  - 28
VL  - 4
PB  - Université de Montpellier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/ojmo.25/
DO  - 10.5802/ojmo.25
LA  - en
ID  - OJMO_2023__4__A5_0
ER  - 
%0 Journal Article
%A Turner, Mark
%A Koch, Thorsten
%A Serrano, Felipe
%A Winkler, Michael
%T Adaptive Cut Selection in Mixed-Integer Linear Programming
%J Open Journal of Mathematical Optimization
%D 2023
%P 1-28
%V 4
%I Université de Montpellier
%U http://geodesic.mathdoc.fr/articles/10.5802/ojmo.25/
%R 10.5802/ojmo.25
%G en
%F OJMO_2023__4__A5_0
Turner, Mark; Koch, Thorsten; Serrano, Felipe; Winkler, Michael. Adaptive Cut Selection in Mixed-Integer Linear Programming. Open Journal of Mathematical Optimization, Tome 4 (2023), article  no. 5, 28 p.. doi: 10.5802/ojmo.25

Cité par Sources :