The backtrack Hölder gradient method with application to min-max and min-min problems
Open Journal of Mathematical Optimization, Tome 4 (2023), article no. 8, 17 p.

Voir la notice de l'article provenant de la source Numdam

We present a new algorithm to solve min-max or min-min problems out of the convex world. We use rigidity assumptions, ubiquitous in learning, making our method – the backtrack Hölder algorithm applicable to many optimization problems. Our approach takes advantage of hidden regularity properties and allows us, in particular, to devise a simple algorithm of ridge type. An original feature of our method is to come with automatic step size adaptation which departs from the usual overly cautious backtracking methods. In a general framework, we provide convergence theoretical guarantees and rates. We apply our findings on simple Generative Adversarial Network (GAN) problems obtaining promising numerical results. It is worthwhile mentioning that a byproduct of our approach is a simple recipe for general Hölderian backtracking optimization.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ojmo.24
Keywords: Hölder gradient, backtracking line search, min-max optimization, ridge method, semi-algebraic optimization

Bolte, Jérôme 1 ; Glaudin, Lilian 2 ; Pauwels, Edouard 3 ; Serrurier, Mathieu 4

1 Toulouse School of Economics, Université Toulouse Capitole, Toulouse, France
2 ANITI, University of Toulouse, Toulouse France
3 Toulouse School of Economics, Institut Universitaire de France, Toulouse, France.
4 Université Paul-Sabatier, IRIT Toulouse, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{OJMO_2023__4__A8_0,
     author = {Bolte, J\'er\^ome and Glaudin, Lilian and Pauwels, Edouard and Serrurier, Mathieu},
     title = {The backtrack {H\"older} gradient method with application to min-max and min-min problems},
     journal = {Open Journal of Mathematical Optimization},
     eid = {8},
     pages = {1--17},
     publisher = {Universit\'e de Montpellier},
     volume = {4},
     year = {2023},
     doi = {10.5802/ojmo.24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/ojmo.24/}
}
TY  - JOUR
AU  - Bolte, Jérôme
AU  - Glaudin, Lilian
AU  - Pauwels, Edouard
AU  - Serrurier, Mathieu
TI  - The backtrack Hölder gradient method with application to min-max and min-min problems
JO  - Open Journal of Mathematical Optimization
PY  - 2023
SP  - 1
EP  - 17
VL  - 4
PB  - Université de Montpellier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/ojmo.24/
DO  - 10.5802/ojmo.24
LA  - en
ID  - OJMO_2023__4__A8_0
ER  - 
%0 Journal Article
%A Bolte, Jérôme
%A Glaudin, Lilian
%A Pauwels, Edouard
%A Serrurier, Mathieu
%T The backtrack Hölder gradient method with application to min-max and min-min problems
%J Open Journal of Mathematical Optimization
%D 2023
%P 1-17
%V 4
%I Université de Montpellier
%U http://geodesic.mathdoc.fr/articles/10.5802/ojmo.24/
%R 10.5802/ojmo.24
%G en
%F OJMO_2023__4__A8_0
Bolte, Jérôme; Glaudin, Lilian; Pauwels, Edouard; Serrurier, Mathieu. The backtrack Hölder gradient method with application to min-max and min-min problems. Open Journal of Mathematical Optimization, Tome 4 (2023), article  no. 8, 17 p.. doi: 10.5802/ojmo.24

Cité par Sources :