Voir la notice de l'article provenant de la source Numdam
In this paper, we consider a robust combinatorial optimization problem with uncertain weights and propose an uncertainty set that generalizes interval uncertainty by imposing lower and upper bounds on deviations of subsets of items. We prove that if the number of such subsets is fixed and the family of these subsets is laminar, then the robust combinatorial optimization problem can be solved by solving a fixed number of nominal problems. This result generalizes a previous similar result for the case where the family of these subsets is a partition of the set of items.
Yaman, Hande 1
@article{OJMO_2023__4__A4_0, author = {Yaman, Hande}, title = {Short {Paper} - {A} {Note} on {Robust} {Combinatorial} {Optimization} with {Generalized} {Interval} {Uncertainty}}, journal = {Open Journal of Mathematical Optimization}, eid = {4}, pages = {1--7}, publisher = {Universit\'e de Montpellier}, volume = {4}, year = {2023}, doi = {10.5802/ojmo.23}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/ojmo.23/} }
TY - JOUR AU - Yaman, Hande TI - Short Paper - A Note on Robust Combinatorial Optimization with Generalized Interval Uncertainty JO - Open Journal of Mathematical Optimization PY - 2023 SP - 1 EP - 7 VL - 4 PB - Université de Montpellier UR - http://geodesic.mathdoc.fr/articles/10.5802/ojmo.23/ DO - 10.5802/ojmo.23 LA - en ID - OJMO_2023__4__A4_0 ER -
%0 Journal Article %A Yaman, Hande %T Short Paper - A Note on Robust Combinatorial Optimization with Generalized Interval Uncertainty %J Open Journal of Mathematical Optimization %D 2023 %P 1-7 %V 4 %I Université de Montpellier %U http://geodesic.mathdoc.fr/articles/10.5802/ojmo.23/ %R 10.5802/ojmo.23 %G en %F OJMO_2023__4__A4_0
Yaman, Hande. Short Paper - A Note on Robust Combinatorial Optimization with Generalized Interval Uncertainty. Open Journal of Mathematical Optimization, Tome 4 (2023), article no. 4, 7 p.. doi: 10.5802/ojmo.23
Cité par Sources :