Voir la notice de l'article provenant de la source Numdam
Frank and Wolfe’s celebrated conditional gradient method is a well-known tool for solving smooth optimization problems for which minimizing a linear function over the feasible set is computationally cheap. However, when the objective function is nonsmooth, the method may fail to compute a stationary point. In this work, we show that the Frank–Wolfe algorithm can be employed to compute Clarke-stationary points for nonconvex and nonsmooth optimization problems consisting of minimizing upper- functions over convex and compact sets. Furthermore, under more restrictive assumptions, we propose a new algorithm variant with stronger stationarity guarantees, namely directional stationarity and even local optimality.
de Oliveira, Welington 1
@article{OJMO_2023__4__A2_0, author = {de Oliveira, Welington}, title = {Short {Paper} - {A} note on the {Frank{\textendash}Wolfe} algorithm for a class of nonconvex and nonsmooth optimization problems}, journal = {Open Journal of Mathematical Optimization}, eid = {2}, pages = {1--10}, publisher = {Universit\'e de Montpellier}, volume = {4}, year = {2023}, doi = {10.5802/ojmo.21}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/ojmo.21/} }
TY - JOUR AU - de Oliveira, Welington TI - Short Paper - A note on the Frank–Wolfe algorithm for a class of nonconvex and nonsmooth optimization problems JO - Open Journal of Mathematical Optimization PY - 2023 SP - 1 EP - 10 VL - 4 PB - Université de Montpellier UR - http://geodesic.mathdoc.fr/articles/10.5802/ojmo.21/ DO - 10.5802/ojmo.21 LA - en ID - OJMO_2023__4__A2_0 ER -
%0 Journal Article %A de Oliveira, Welington %T Short Paper - A note on the Frank–Wolfe algorithm for a class of nonconvex and nonsmooth optimization problems %J Open Journal of Mathematical Optimization %D 2023 %P 1-10 %V 4 %I Université de Montpellier %U http://geodesic.mathdoc.fr/articles/10.5802/ojmo.21/ %R 10.5802/ojmo.21 %G en %F OJMO_2023__4__A2_0
de Oliveira, Welington. Short Paper - A note on the Frank–Wolfe algorithm for a class of nonconvex and nonsmooth optimization problems. Open Journal of Mathematical Optimization, Tome 4 (2023), article no. 2, 10 p.. doi: 10.5802/ojmo.21
Cité par Sources :