Cycle-based formulations in Distance Geometry
Open Journal of Mathematical Optimization, Tome 4 (2023), article no. 1, 16 p.

Voir la notice de l'article provenant de la source Numdam

The distance geometry problem asks to find a realization of a given simple edge-weighted graph in a Euclidean space of given dimension K, where the edges are realized as straight segments of lengths equal (or as close as possible) to the edge weights. The problem is often modelled as a mathematical programming formulation involving decision variables that determine the position of the vertices in the given Euclidean space. Solution algorithms are generally constructed using local or global nonlinear optimization techniques. We present a new modelling technique for this problem where, instead of deciding vertex positions, the formulations decide the length of the segments representing the edges in each cycle in the graph, projected in every dimension. We propose an exact formulation and a relaxation based on a Eulerian cycle. We then compare computational results from protein conformation instances obtained with stochastic global optimization techniques on the new cycle-based formulation and on the existing edge-based formulation. While edge-based formulations take less time to reach termination, cycle-based formulations are generally better on solution quality measures.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/ojmo.18
Classification : 90C26, 51K05
Keywords: Mathematical Programming, cycle basis, protein conformation

Liberti, Leo 1 ; Iommazzo, Gabriele 2 ; Lavor, Carlile 3 ; Maculan, Nelson 4

1 LIX CNRS Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
2 Zuse Institute Berlin, Berlin, 14195, Germany
3 IMECC, University of Campinas, Brazil
4 COPPE, Federal University of Rio de Janeiro (UFRJ), Brazil
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{OJMO_2023__4__A1_0,
     author = {Liberti, Leo and Iommazzo, Gabriele and Lavor, Carlile and Maculan, Nelson},
     title = {Cycle-based formulations in {Distance} {Geometry}},
     journal = {Open Journal of Mathematical Optimization},
     eid = {1},
     pages = {1--16},
     publisher = {Universit\'e de Montpellier},
     volume = {4},
     year = {2023},
     doi = {10.5802/ojmo.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/ojmo.18/}
}
TY  - JOUR
AU  - Liberti, Leo
AU  - Iommazzo, Gabriele
AU  - Lavor, Carlile
AU  - Maculan, Nelson
TI  - Cycle-based formulations in Distance Geometry
JO  - Open Journal of Mathematical Optimization
PY  - 2023
SP  - 1
EP  - 16
VL  - 4
PB  - Université de Montpellier
UR  - http://geodesic.mathdoc.fr/articles/10.5802/ojmo.18/
DO  - 10.5802/ojmo.18
LA  - en
ID  - OJMO_2023__4__A1_0
ER  - 
%0 Journal Article
%A Liberti, Leo
%A Iommazzo, Gabriele
%A Lavor, Carlile
%A Maculan, Nelson
%T Cycle-based formulations in Distance Geometry
%J Open Journal of Mathematical Optimization
%D 2023
%P 1-16
%V 4
%I Université de Montpellier
%U http://geodesic.mathdoc.fr/articles/10.5802/ojmo.18/
%R 10.5802/ojmo.18
%G en
%F OJMO_2023__4__A1_0
Liberti, Leo; Iommazzo, Gabriele; Lavor, Carlile; Maculan, Nelson. Cycle-based formulations in Distance Geometry. Open Journal of Mathematical Optimization, Tome 4 (2023), article  no. 1, 16 p.. doi: 10.5802/ojmo.18

Cité par Sources :