Voir la notice de l'article provenant de la source Numdam
We study the classic pure selection integrodifferential equation, stemming from adaptative dynamics, in a measure framework by mean of duality approach. After providing a well posedness result under fairly general assumptions, we focus on the asymptotic behaviour of various cases, illustrated by some numerical simulations.
Martin, Hugo 1
@article{MSIA_2023__12_1_155_0, author = {Martin, Hugo}, title = {Measure framework for the pure selection equation: global well posedness and numerical investigations}, journal = {MathematicS In Action}, pages = {155--173}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {12}, number = {1}, year = {2023}, doi = {10.5802/msia.36}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/msia.36/} }
TY - JOUR AU - Martin, Hugo TI - Measure framework for the pure selection equation: global well posedness and numerical investigations JO - MathematicS In Action PY - 2023 SP - 155 EP - 173 VL - 12 IS - 1 PB - Société de Mathématiques Appliquées et Industrielles UR - http://geodesic.mathdoc.fr/articles/10.5802/msia.36/ DO - 10.5802/msia.36 LA - en ID - MSIA_2023__12_1_155_0 ER -
%0 Journal Article %A Martin, Hugo %T Measure framework for the pure selection equation: global well posedness and numerical investigations %J MathematicS In Action %D 2023 %P 155-173 %V 12 %N 1 %I Société de Mathématiques Appliquées et Industrielles %U http://geodesic.mathdoc.fr/articles/10.5802/msia.36/ %R 10.5802/msia.36 %G en %F MSIA_2023__12_1_155_0
Martin, Hugo. Measure framework for the pure selection equation: global well posedness and numerical investigations. MathematicS In Action, Maths Bio, Tome 12 (2023) no. 1, pp. 155-173. doi: 10.5802/msia.36
Cité par Sources :