An Interacting Neuronal Network with Inhibition: theoretical analysis and perfect simulation
MathematicS In Action, Maths Bio, Tome 12 (2023) no. 1, pp. 3-22

Voir la notice de l'article provenant de la source Numdam

We study a purely inhibitory neural network model where neurons are represented by their state of inhibition. The study we present here is partially based on the work of Cottrell [6] and Fricker et al. [8]. The spiking rate of a neuron depends only on its state of inhibition. When a neuron spikes, its state is replaced by a random new state, independently of anything else, and the inhibition states of the other neurons increase by a positive value. Using the Perron–Frobenius theorem, we show the existence of a Lyapunov function for the process. Furthermore, we prove a local Doeblin condition which implies the existence of an invariant probability measure for the process. Finally, we extend our model to the case where the neurons are indexed by . We construct a perfect simulation algorithm to show the recurrence of the process under certain conditions. To do this, we rely on the classical contour technique used in the study of contact processes, and assuming that the spiking rate takes values in the interval [β * ,β * ], we show that there is a critical threshold for the ratio δ=β * β * -β * over which the process is ergodic.

Publié le :
DOI : 10.5802/msia.29
Classification : 00X99
Keywords: Spiking rate, Interacting neurons, Perfect simulation algorithm, Classical contour technique

Goncalves, Branda P. I. 1

1 Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, CNRS UMR-8089, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MSIA_2023__12_1_3_0,
     author = {Goncalves, Branda P. I.},
     title = {An {Interacting} {Neuronal} {Network} with {Inhibition:} theoretical analysis and perfect simulation},
     journal = {MathematicS In Action},
     pages = {3--22},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {12},
     number = {1},
     year = {2023},
     doi = {10.5802/msia.29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/msia.29/}
}
TY  - JOUR
AU  - Goncalves, Branda P. I.
TI  - An Interacting Neuronal Network with Inhibition: theoretical analysis and perfect simulation
JO  - MathematicS In Action
PY  - 2023
SP  - 3
EP  - 22
VL  - 12
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://geodesic.mathdoc.fr/articles/10.5802/msia.29/
DO  - 10.5802/msia.29
LA  - en
ID  - MSIA_2023__12_1_3_0
ER  - 
%0 Journal Article
%A Goncalves, Branda P. I.
%T An Interacting Neuronal Network with Inhibition: theoretical analysis and perfect simulation
%J MathematicS In Action
%D 2023
%P 3-22
%V 12
%N 1
%I Société de Mathématiques Appliquées et Industrielles
%U http://geodesic.mathdoc.fr/articles/10.5802/msia.29/
%R 10.5802/msia.29
%G en
%F MSIA_2023__12_1_3_0
Goncalves, Branda P. I. An Interacting Neuronal Network with Inhibition: theoretical analysis and perfect simulation. MathematicS In Action, Maths Bio, Tome 12 (2023) no. 1, pp. 3-22. doi: 10.5802/msia.29

Cité par Sources :