Hyperbolicity from contact surgery
Mathematics Research Reports, Tome 4 (2023), pp. 1-10

Voir la notice de l'article provenant de la source Numdam

A Dehn surgery on the periodic fiber flow of the unit tangent bundle of a surface produces a uniformly hyperbolic Cantor set for the resulting contact flow.

Reçu le :
Révisé le :
Publié le :
DOI : 10.5802/mrr.14
Classification : 37D20, 57N10
Keywords: Hyperbolic flow, 3-manifold, contact flow, surgery

Hasselblatt, Boris 1 ; Heberle, Curtis 1

1 Department of Mathematics, Tufts University, Medford, MA 02155, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{MRR_2023__4__1_0,
     author = {Hasselblatt, Boris and Heberle, Curtis},
     title = {Hyperbolicity from contact surgery},
     journal = {Mathematics Research Reports},
     pages = {1--10},
     publisher = {MathOA foundation},
     volume = {4},
     year = {2023},
     doi = {10.5802/mrr.14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/mrr.14/}
}
TY  - JOUR
AU  - Hasselblatt, Boris
AU  - Heberle, Curtis
TI  - Hyperbolicity from contact surgery
JO  - Mathematics Research Reports
PY  - 2023
SP  - 1
EP  - 10
VL  - 4
PB  - MathOA foundation
UR  - http://geodesic.mathdoc.fr/articles/10.5802/mrr.14/
DO  - 10.5802/mrr.14
LA  - en
ID  - MRR_2023__4__1_0
ER  - 
%0 Journal Article
%A Hasselblatt, Boris
%A Heberle, Curtis
%T Hyperbolicity from contact surgery
%J Mathematics Research Reports
%D 2023
%P 1-10
%V 4
%I MathOA foundation
%U http://geodesic.mathdoc.fr/articles/10.5802/mrr.14/
%R 10.5802/mrr.14
%G en
%F MRR_2023__4__1_0
Hasselblatt, Boris; Heberle, Curtis. Hyperbolicity from contact surgery. Mathematics Research Reports, Tome 4 (2023), pp. 1-10. doi: 10.5802/mrr.14

Cité par Sources :