Voir la notice de l'article provenant de la source Numdam
We prove that if by we denote the set of all numbers in whose infinite continued fraction expansions have all entries in the finite set , then , where is the Hausdorff dimension of , is the corresponding Hausdorff measure, and denotes the set of all irrational numbers in , i .e. those whose continued fraction expansion is infinite. We also show that this property is not too common by constructing a class of infinite iterated function systems on , consisting of similarities, for which ; the lower limit is taken over finite subsets of the countable infinite alphabet .
Nous montrons que, si est l’ensemble des réels dans dont la fraction continue infinie est constituée de nombres entiers compris entre et , alors , où est la dimension de Hausdorff de , est la mesure de Hausdorff correspondant et où est l’ensemble de tous les nombres irrationnels de , i.e. ceux dont la fraction continue est infinie. Nous montrons aussi que cette propriété n’est pas générale en construisant une classe de systèmes de fonctions itérées sur , formés de similarités, pour lesquels ; cette limite inférieure s’étend sur les sous-ensembles finis de l’alphabet infini .
Urbański, Mariusz 1 ; Zdunik, Anna 2
@article{JTNB_2016__28_1_261_0, author = {Urba\'nski, Mariusz and Zdunik, Anna}, title = {Continuity of the {Hausdorff} {Measure} of {Continued} {Fractions} and {Countable} {Alphabet} {Iterated} {Function} {Systems}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {261--286}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {1}, year = {2016}, doi = {10.5802/jtnb.938}, mrnumber = {3464621}, zbl = {1369.11057}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.938/} }
TY - JOUR AU - Urbański, Mariusz AU - Zdunik, Anna TI - Continuity of the Hausdorff Measure of Continued Fractions and Countable Alphabet Iterated Function Systems JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 261 EP - 286 VL - 28 IS - 1 PB - Société Arithmétique de Bordeaux UR - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.938/ DO - 10.5802/jtnb.938 LA - en ID - JTNB_2016__28_1_261_0 ER -
%0 Journal Article %A Urbański, Mariusz %A Zdunik, Anna %T Continuity of the Hausdorff Measure of Continued Fractions and Countable Alphabet Iterated Function Systems %J Journal de théorie des nombres de Bordeaux %D 2016 %P 261-286 %V 28 %N 1 %I Société Arithmétique de Bordeaux %U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.938/ %R 10.5802/jtnb.938 %G en %F JTNB_2016__28_1_261_0
Urbański, Mariusz; Zdunik, Anna. Continuity of the Hausdorff Measure of Continued Fractions and Countable Alphabet Iterated Function Systems. Journal de théorie des nombres de Bordeaux, Tome 28 (2016) no. 1, pp. 261-286. doi : 10.5802/jtnb.938. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.938/
[1] D. Hensley, « Continued fraction Cantor sets, Hausdorff dimension, and functional analysis », J. Number Theory 40 (1992), no. 3, p. 336-358. | DOI | Zbl | MR
[2] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995, Fractals and rectifiability, xii+343 pages. | DOI | Zbl
[3] R. D. Mauldin & M. Urbański, « Dimensions and measures in infinite iterated function systems », Proc. London Math. Soc. (3) 73 (1996), no. 1, p. 105-154. | DOI | Zbl | MR
[4] —, Graph directed Markov systems, Cambridge Tracts in Mathematics, vol. 148, Cambridge University Press, Cambridge, 2003, Geometry and dynamics of limit sets, xii+281 pages. | DOI
[5] L. Olsen, « Hausdorff and packing measure functions of self-similar sets: continuity and measurability », Ergodic Theory Dynam. Systems 28 (2008), no. 5, p. 1635-1655. | DOI | Zbl | MR
[6] T. Szarek, M. Urbański & A. Zdunik, « Continuity of Hausdorff measure for conformal dynamical systems », Discrete Contin. Dyn. Syst. 33 (2013), no. 10, p. 4647-4692. | DOI | Zbl
Cité par Sources :