Voir la notice de l'article provenant de la source Numdam
E. Thomas was one of the first to solve an infinite family of Thue equations, when he considered the forms and the family of equations , . This family is associated to the family of the simplest cubic fields of D. Shanks, being a root of . We introduce in this family a second parameter by replacing the roots of the minimal polynomial of by the -th powers of the roots and we effectively solve the family of Thue equations that we obtain and which depends now on the two parameters and .
E. Thomas fut l’un des premiers à résoudre une famille infinie d’équations de Thue, lorsqu’il a considéré les formes et la famille d’équations , . Cette famille est associée à la famille des corps cubiques les plus simples de D. Shanks, étant une racine de . Nous introduisons dans cette famille un second paramètre en remplaçant les racines du polynôme minimal de par les puissances -ièmes des racines et nous résolvons de façon effective la famille d’équations de Thue que nous obtenons et qui dépend maintenant des deux paramètres et .
Levesque, Claude 1 ; Waldschmidt, Michel 2
@article{JTNB_2015__27_2_537_0, author = {Levesque, Claude and Waldschmidt, Michel}, title = {A family of {Thue} equations involving powers of units of the simplest cubic fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {537--563}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {2}, year = {2015}, doi = {10.5802/jtnb.913}, mrnumber = {3393166}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.913/} }
TY - JOUR AU - Levesque, Claude AU - Waldschmidt, Michel TI - A family of Thue equations involving powers of units of the simplest cubic fields JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 537 EP - 563 VL - 27 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.913/ DO - 10.5802/jtnb.913 LA - en ID - JTNB_2015__27_2_537_0 ER -
%0 Journal Article %A Levesque, Claude %A Waldschmidt, Michel %T A family of Thue equations involving powers of units of the simplest cubic fields %J Journal de théorie des nombres de Bordeaux %D 2015 %P 537-563 %V 27 %N 2 %I Société Arithmétique de Bordeaux %U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.913/ %R 10.5802/jtnb.913 %G en %F JTNB_2015__27_2_537_0
Levesque, Claude; Waldschmidt, Michel. A family of Thue equations involving powers of units of the simplest cubic fields. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 2, pp. 537-563. doi : 10.5802/jtnb.913. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.913/
[1] J.H. Chen, Efficient rational approximation of a class of algebraic numbers, (in Chinese) Chinese Science Bulletin, 41 (1996), 1643–1646. | MR
[2] G. Lettl, A. Pethő, and P. Voutier, Simple families of Thue inequalities, Trans. Amer. Math. Soc., 351 (1999), 1871–1894. | Zbl | MR
[3] C. Levesque and M. Waldschmidt, Families of cubic Thue equations with effective bounds for the solutions Springer Proceedings in Mathematics & Statistics 43 (2013) 229—243. | MR
[4] C. Levesque and M. Waldschmidt, Solving simultaneously Thue Diophantine equations: almost totally imaginary case, Proceedings of the International Meeting on Number Theory 2011, in honor of R. Balasubramanian, Lecture Notes Series in Ramanujan Mathematical Society, to appear. | MR
[5] C. Levesque and M. Waldschmidt, Solving effectively some families of Thue Diophantine equations, Moscow J. of Combinatorics and Number Theory, 3 3–4 (2013), 118–144. | MR
[6] C. Levesque and M. Waldschmidt, Families of Thue equations associated with a totally real rank subgroup of the units of a number field. Work in progress.
[7] M. Mignotte, Verification of a conjecture of E. Thomas, J. Number Theory, 44 (1993), 172–177. | Zbl | MR
[8] M. Mignotte, A. Pethő and F. Lemmermeyer, On the family of Thue equations , Acta Arith. 76 (1996), 245–269. | Zbl | MR
[9] T.N. Shorey and R. Tijdeman, Exponential Diophantine equations, vol. 87 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1986. | Zbl | MR
[10] E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory, 34 (1990), pp. 235–250. | Zbl | MR
[11] I. Wakabayashi, Simple families of Thue inequalities, Ann. Sci. Math. Québec 31 (2007), no. 2, 211–232. | Zbl | MR
Cité par Sources :