PSL(2,7) septimic fields with a power basis
Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 369-375.

Voir la notice de l'article provenant de la source Numdam

We give an infinite set of distinct monogenic septimic fields whose normal closure has Galois group PSL(2,7).

Nous donnons un ensemble infini de corps de degré 7 monogènes distincts dont la clôture normale a pour groupe de Galois PSL(2,7).

DOI : 10.5802/jtnb.801
Classification : 11R04, 11R32
Keywords: Galois Group, Septimic Field, Power Basis

Lavallee, Melisa J. 1 ; Spearman, Blair K. 1 ; Yang, Qiduan 1

1 Department of Mathematics and Statistics University of British Columbia Okanagan Kelowna, BC, Canada, V1V 1V7
@article{JTNB_2012__24_2_369_0,
     author = {Lavallee, Melisa J. and Spearman, Blair K. and Yang, Qiduan},
     title = {PSL$(2,7)$ septimic fields with a power basis},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {369--375},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {24},
     number = {2},
     year = {2012},
     doi = {10.5802/jtnb.801},
     zbl = {1280.11062},
     mrnumber = {2950697},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.801/}
}
TY  - JOUR
AU  - Lavallee, Melisa J.
AU  - Spearman, Blair K.
AU  - Yang, Qiduan
TI  - PSL$(2,7)$ septimic fields with a power basis
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2012
SP  - 369
EP  - 375
VL  - 24
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.801/
DO  - 10.5802/jtnb.801
LA  - en
ID  - JTNB_2012__24_2_369_0
ER  - 
%0 Journal Article
%A Lavallee, Melisa J.
%A Spearman, Blair K.
%A Yang, Qiduan
%T PSL$(2,7)$ septimic fields with a power basis
%J Journal de théorie des nombres de Bordeaux
%D 2012
%P 369-375
%V 24
%N 2
%I Société Arithmétique de Bordeaux
%U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.801/
%R 10.5802/jtnb.801
%G en
%F JTNB_2012__24_2_369_0
Lavallee, Melisa J.; Spearman, Blair K.; Yang, Qiduan. PSL$(2,7)$ septimic fields with a power basis. Journal de théorie des nombres de Bordeaux, Tome 24 (2012) no. 2, pp. 369-375. doi : 10.5802/jtnb.801. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.801/

[1] H. Cohen, A Course in Computational Algebraic Number Theory. Springer-Verlag, 2000. | Zbl | MR

[2] I. Gaál, Diophantine equations and power integral bases. New Computational Methods. Birkhauser, Boston, 2002. | MR | Zbl

[3] M.-N. Gras, Non-monogénéité de l’anneau des entiers des extensions cycliques de Q de degré premier l5. J. Number Theory 23 (1986), 347–353. | Zbl | MR

[4] C. U. Jensen, A. Ledet, N. Yui, Generic Polynomials, constructive aspects of Galois theory, MSRI Publications. Cambridge University Press, 2002. | MR | Zbl

[5] M. J. Lavallee, B. K. Spearman, K. S. Williams, and Q. Yang, Dihedral quintic fields with a power basis. Mathematical Journal of Okayama University, vol. 47 (2005), 75–79. | MR | Zbl

[6] Y. Motoda, T. Nakahara and K. H Park, On power integral bases of the 2-elementary abelian extension fields. Trends in Mathematics, Information Center for Mathematical Sciences, Volume 8 (June 2006), Number 1, 55–63.

[7] M. Nair, Power free values of polynomials. Mathematika 23 (1976), 159–183. | Zbl | MR

[8] B. K. Spearman, A. Watanabe and K. S. Williams, PSL(2,5) sextic fields with a power basis. Kodai Math. J., Vol. 29 (2006), No. 1, 5–12. | MR | Zbl

[9] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Third Edition, Springer, 2000. | Zbl | MR

Cité par Sources :