Class invariants and cyclotomic unit groups from special values of modular units
Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 2, pp. 289-325.

Voir la notice de l'article provenant de la source Numdam

In this article we obtain class invariants and cyclotomic unit groups by considering specializations of modular units. We construct these modular units from functional solutions to higher order q-recurrence equations given by Selberg in his work generalizing the Rogers-Ramanujan identities. As a corollary, we provide a new proof of a result of Zagier and Gupta, originally considered by Gauss, regarding the Gauss periods. These results comprise part of the author’s 2006 Ph.D. thesis [6] in which the structure of these modular unit groups and their associated cuspidal divisor class groups are also characterized, and a cuspidal divisor class number formula is given in terms of products of L-functions and compared to the classical relative class number formula within the cyclotomic fields [6, 7].

Dans cet article, nous obtenons des invariants de classe et des groupes d’unités cyclotomiques en considérant des spécialisations d’unités modulaires. Nous construisons ces unités modulaires à partir de solutions d’équations fonctionnelles de q-récurrence données par Selberg dans son travail généralisant les identités de Rogers-Ramanujan. Commme corollaire, nous donnons une nouvelle preuve d’un résultat de Zagier et Gupta, originellement considéré par Gauss, à propos des périodes de Gauss. Ces résultats proviennent pour partie de la thèse de l’auteur en 2006 [6] dans laquelle la structure de ces groupes d’unités modulaires et de leur groupe de classes de diviseurs cuspidaux associé est donnée en termes de produits de fonctions L et comparée à la formule classique du nombre de classes relatives pour les corps cyclotomiques [6, 7].

DOI : 10.5802/jtnb.628

Folsom, Amanda 1

1 Department of Mathematics University of California, Los Angeles Box 951555 Los Angeles, CA 90095-1555, USA
@article{JTNB_2008__20_2_289_0,
     author = {Folsom, Amanda},
     title = {Class invariants and cyclotomic unit groups from special values of modular units},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {289--325},
     publisher = {Universit\'e Bordeaux 1},
     volume = {20},
     number = {2},
     year = {2008},
     doi = {10.5802/jtnb.628},
     zbl = {1172.11019},
     mrnumber = {2477505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.628/}
}
TY  - JOUR
AU  - Folsom, Amanda
TI  - Class invariants and cyclotomic unit groups from special values of modular units
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2008
SP  - 289
EP  - 325
VL  - 20
IS  - 2
PB  - Université Bordeaux 1
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.628/
DO  - 10.5802/jtnb.628
LA  - en
ID  - JTNB_2008__20_2_289_0
ER  - 
%0 Journal Article
%A Folsom, Amanda
%T Class invariants and cyclotomic unit groups from special values of modular units
%J Journal de théorie des nombres de Bordeaux
%D 2008
%P 289-325
%V 20
%N 2
%I Université Bordeaux 1
%U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.628/
%R 10.5802/jtnb.628
%G en
%F JTNB_2008__20_2_289_0
Folsom, Amanda. Class invariants and cyclotomic unit groups from special values of modular units. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 2, pp. 289-325. doi : 10.5802/jtnb.628. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.628/

[1] G. Andrews, An analytic proof of the Rogers-Ramanujan-Gordon identities. Amer. J. Math. 88 (1966), 844–846. | Zbl | MR

[2] G. Andrews, An introduction to Ramanujan’s ‘lost’ notebook. Amer. Math. Monthly 86 (1979), no. 2, 89–108. | Zbl

[3] S. Bettner, R. Schertz, Lower powers of elliptic units. J. Théor. Nombres Bordeaux 13 (2001) no. 2, 339–351. | Zbl | MR | mathdoc-id

[4] W. Duke, Continued Fractions and Modular Functions. Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 2, 137–162. | Zbl | MR

[5] H. M. Farkas, I. Kra, Theta constants, Riemann surfaces and the modular group. Graduate Studies in Mathematics 37. American Mathematical Society, Providence, RI, (2001). | Zbl | MR

[6] A. Folsom, Modular Units. UCLA Ph.D. Thesis, 2006.

[7] A. Folsom, Modular units, divisor class groups, and the q-difference equations of Selberg. Preprint, submitted.

[8] S. Gupta, D. Zagier, On the coefficients of the minimal polynomials of Gaussian periods. Math. Comp. 60 (1993), no. 201, 385–398. | Zbl | MR

[9] N. Ishida, N. Ishii, The equations for modular function fields of principal congruence subgroups of prime level. Manuscripta Math. 90 (1996), no. 3, 271–285. | Zbl | MR

[10] N. Ishida, Generators and equations for modular function fields of principal congruence subgroups. Acta Arith. 85 (1998), no. 3, 197–207. | Zbl | MR

[11] N. Ishii, Construction of generators of modular function fields. Math. Japon. 28 (1983), no. 6, 655–681. | Zbl | MR

[12] D. S. Kubert, S. Lang, Units in the modular function field. I. Math. Ann. 218 (1975), no. 1, 67–96. | Zbl | MR

[13] D. S. Kubert, S. Lang, Units in the modular function field. II. A full set of units. Math. Ann. 218 (1975), no. 2, 175–189. | Zbl | MR

[14] D. S. Kubert,S. Lang, Units in the modular function field. III. Distribution relations. Math. Ann. 218 (1975), no. 3, 273–285. | Zbl | MR

[15] D. S. Kubert, S. Lang, Units in the modular function field. Modular functions of one variable V. (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lecture Notes in Math., Vol. 601, Springer, Berlin, (1977), 247–275. | Zbl | MR

[16] D. S. Kubert, S. Lang, Distributions on toroidal groups. Math. Z. 148 (1976), no. 1, 33–51. | Zbl | MR

[17] D. S. Kubert, S. Lang, Units in the modular function field. IV. The Siegel functions are generators. Math. Ann. 227 (1977), no. 3, 223–242. | Zbl | MR

[18] D. S. Kubert, S. Lang, The p-primary component of the cuspidal divisor class group on the modular curve X(p). Math. Ann. 234 (1978), no. 1, 25–44. | Zbl | MR

[19] D. S Kubert, S. Lang, Modular Units. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science] 244. Springer-Verlag, New York-Berlin, (1981). | Zbl | MR

[20] S. Lang, Elliptic Functions. Addison-Wesley Publishing Co., Reading, MA, (1973). | Zbl | MR

[21] K. Ramachandra, Some applications of Kronecker’s limit formulas. Ann. of Math. (2) 80 (1964), 104–148. | Zbl

[22] L.J. Rogers, Second Memoir on the Expansion of Certain Infinite Products. Proc. London Math. Soc. 25 (1894), 318–343.

[23] L.J. Rogers, S. Ramanujan, Proof of certain identities in combinatory analysis. Cambr. Phil. Soc. Proc. 19 (1919), 211–216.

[24] R. Schertz, Construction of Ray Class Fields by Elliptic Units. J. Théor. Nombres Bordeaux 9 (1997), no. 2, 383–394. | Zbl | MR | mathdoc-id

[25] I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse (1917), 302–321.

[26] A. Selberg, Über einge aritheoremetische Identitäten. Avh. Norske Vidensk. Akad. Oslo, I 1936, Nr. 8, 23 S.(1936); reprinted in Collected Papers, Vol. I, Springer-Verlag, Berlin, (1989). | Zbl

[27] G. Shimura, Introduction to the Aritheoremetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan 11. Iwanami Shoten, Publishers, and Princeton University Press, (1971). | Zbl | MR

[28] J.J. Sylvester, On certain ternary cubic equations. Amer. J. Math. 2 (1879), 357–381; reprinted in Collected Papers, Vol. 3, Cambridge, (1909), 325–339.

[29] L.C. Washington, Introduction to Cyclotomic Fields, 2nd Ed. Graduate Texts in Mathematics vol. 83, Springer Verlag, (1997). | Zbl | MR

Cité par Sources :