Voir la notice de l'article provenant de la source Numdam
Dans cette note, nous montrons que la dynamique d’un polynôme quadratique sur un corps local peut être déterminée en temps fini, et que l’on a l’alternative suivante : soit l’ensemble de Julia est vide, soit y est conjugué au décalage unilatéral sur symboles.
We show that the dynamics of a quadratic polynomial over a local field can be completely decided in a finite amount of time, with the following two possibilities : either the Julia set is empty, or the polynomial is topologically conjugate on its Julia set to the one-sided shift on two symbols.
Benedetto, Robert 1 ; Briend, Jean-Yves 2 ; Perdry, Hervé 3
@article{JTNB_2007__19_2_325_0, author = {Benedetto, Robert and Briend, Jean-Yves and Perdry, Herv\'e}, title = {Dynamique des polyn\^omes quadratiques sur les corps locaux}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {325--336}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {2}, year = {2007}, doi = {10.5802/jtnb.589}, mrnumber = {2394889}, language = {fr}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.589/} }
TY - JOUR AU - Benedetto, Robert AU - Briend, Jean-Yves AU - Perdry, Hervé TI - Dynamique des polynômes quadratiques sur les corps locaux JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 325 EP - 336 VL - 19 IS - 2 PB - Université Bordeaux 1 UR - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.589/ DO - 10.5802/jtnb.589 LA - fr ID - JTNB_2007__19_2_325_0 ER -
%0 Journal Article %A Benedetto, Robert %A Briend, Jean-Yves %A Perdry, Hervé %T Dynamique des polynômes quadratiques sur les corps locaux %J Journal de théorie des nombres de Bordeaux %D 2007 %P 325-336 %V 19 %N 2 %I Université Bordeaux 1 %U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.589/ %R 10.5802/jtnb.589 %G fr %F JTNB_2007__19_2_325_0
Benedetto, Robert; Briend, Jean-Yves; Perdry, Hervé. Dynamique des polynômes quadratiques sur les corps locaux. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 2, pp. 325-336. doi : 10.5802/jtnb.589. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.589/
[A] E. Artin, Algebraic Numbers and Algebraic Functions. Gordon and Breach, New-York 1967. | Zbl | MR
[BH] M. Baker et L-C. Hsia, Canonical heights, transfinite diameters, and polynomial dynamics. J. Reine Angew. Math. 585 (2005), 61–92. | Zbl | MR
[Be1] R. Benedetto, Fatou Components in -adic Dynamics. Thesis, Brown University, 1998.
[Be2] R. Benedetto, Reduction, dynamics, and Julia sets of rational functions. J. Number Theory 86 (2001), 175–195. | Zbl | MR
[B1] J-P. Bézivin, Sur les points périodiques des applications rationnelles en dynamique ultramétrique. Acta Arithmetica 100 (2001), 63–74. | Zbl | MR
[B2] J-P. Bézivin, Sur la compacité des ensembles de Julia des polynômes -adiques. Math. Z. 246 (2004), 273–289. | Zbl | MR
[BCSS] L. Blum, F. Cucker, M. Shub et S. Smale, Complexity And Real Computation. Spinger Verlag, Berlin 1998. | Zbl | MR
[BY1] M. Braverman et M. Yampolsky, Non-computable Julia sets. J. Amer. Math. Soc. 19 (2006), no. 3, 551–578. | Zbl | MR
[BY2] M. Braverman et M. Yampolsky, On computability of Julia sets : answers to questions of Milnor and Shub. Preprint 2006. | MR
[De] J. Denef, -adic semi-algebraic sets and cell decomposition. J. Reine Angew. Math. 369 (1986), 154–166. | Zbl | MR
[DH] A. Douady et J. H. Hubbard, Itération des polynômes quadratiques complexes. Comptes Rendus Acad. Sci. Paris 294 (1982), 123–126. | Zbl | MR
[D] V. A. Dremov, On a -adic Julia set. Russian Math. Surveys 58 (2003), 1194–1195. | Zbl | MR
[FR] C. Favre et J. Rivera–Letelier, Théorème d’équidistribution de Brolin en dynamique -adique. Comptes Rendus Acad. Sci. Paris 339 (2004), 271–276. | Zbl
[H1] L-C. Hsia, A weak Néron model with applications to -adic dynamical systems. Compositio Math. 100 (1996), 277–304. | Zbl | MR | mathdoc-id
[H2] L-C. Hsia, Closure of periodic points over a non archimedean field. J. London. Math. Soc. 62 (2000), 685-700. | Zbl | MR
[J] M. Jakobson, Absolutely continuous invariant measures for one parameter families of one-dimensional maps. Comm. Math. Phys. 81 (1981), 161–185. | Zbl | MR
[Jo] R. Jones, Galois martingales and the hyperbolic subset of the -adic Mandelbrot set. PhD thesis (2005), Brown University.
[L] M. Lyubich, Almost every real quadratic map is either regular or stochastic. Ann. of Math. 156 (2002), 1–78. | MR
[M] J. Milnor, Dynamics in One Complex Variable. Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1999. | Zbl | MR
[MS] P. Morton et J. Silverman, Periodic points, multiplicities, and dynamical units. J. Reine Angew. Math. 461 (1995), 81–122. | Zbl | MR
[Na] W. Narkiewicz, Polynomial Mappings. Lecture Notes in Mathematics 1600 (1995), Springer Verlag, Berlin. | Zbl | MR
[NR] M. Nevins et T. Rogers, Quadratic maps as dynamical systems on the -adic numbers. Prépublication (2000).
[No] D. G. Northcott, Periodic points on an algebraic variety. Ann. of Math. 51 (1950), 167–177. | Zbl | MR
[P] T. Pezda, Polynomial cycles in certain local domains. Acta Arithmetica 66 (1994), 11–22. | Zbl | MR
[R] J. Rivera–Letelier, Dynamique des fractions rationnelles sur les corps locaux, dans Geometric Methods in Dynamics, II. Astérisque 287 (2003), 199-231. | Zbl
[TVW] E. Thiran, D. Verstegen, J. Weyers, -adic dynamics. J. Stat. Phys. 54 (1989), 893–913. | Zbl | MR
[W] A. Weil, Basic Number Theory. Die Grundlehren des mathematischen Wissenschaften 144 (1967), Springer Verlag, Berlin. | Zbl | MR
[WS] C. Woodcock et N. Smart, -adic chaos and random number generation. Experiment. Math. 7 (1998), 333–342. | Zbl | MR
Cité par Sources :