On the largest prime factor of n!+2 n -1
Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 3, pp. 859-870.

Voir la notice de l'article provenant de la source Numdam

For an integer n2 we denote by P(n) the largest prime factor of n. We obtain several upper bounds on the number of solutions of congruences of the form n!+2 n -10(modq) and use these bounds to show that

lim sup n P ( n ! + 2 n - 1 ) / n ( 2 π 2 + 3 ) / 18 .

Pour un entier n2, notons P(n) le plus grand facteur premier de n. Nous obtenons des majorations sur le nombre de solutions de congruences de la forme n!+2 n -10(modq) et nous utilisons ces bornes pour montrer que

lim sup n P ( n ! + 2 n - 1 ) / n ( 2 π 2 + 3 ) / 18 .

DOI : 10.5802/jtnb.524

Luca, Florian 1 ; Shparlinski, Igor E. 2

1 Instituto de Matemáticas Universidad Nacional Autónoma de México C.P. 58089, Morelia, Michoacán, México
2 Macquarie University Sydney, NSW 2109, Australia
@article{JTNB_2005__17_3_859_0,
     author = {Luca, Florian and Shparlinski, Igor E.},
     title = {On the largest prime factor of $n!+ 2^n-1$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {859--870},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {3},
     year = {2005},
     doi = {10.5802/jtnb.524},
     mrnumber = {2212129},
     zbl = {1097.11006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.524/}
}
TY  - JOUR
AU  - Luca, Florian
AU  - Shparlinski, Igor E.
TI  - On the largest prime factor of $n!+ 2^n-1$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2005
SP  - 859
EP  - 870
VL  - 17
IS  - 3
PB  - Université Bordeaux 1
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.524/
DO  - 10.5802/jtnb.524
LA  - en
ID  - JTNB_2005__17_3_859_0
ER  - 
%0 Journal Article
%A Luca, Florian
%A Shparlinski, Igor E.
%T On the largest prime factor of $n!+ 2^n-1$
%J Journal de théorie des nombres de Bordeaux
%D 2005
%P 859-870
%V 17
%N 3
%I Université Bordeaux 1
%U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.524/
%R 10.5802/jtnb.524
%G en
%F JTNB_2005__17_3_859_0
Luca, Florian; Shparlinski, Igor E. On the largest prime factor of $n!+ 2^n-1$. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 3, pp. 859-870. doi : 10.5802/jtnb.524. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.524/

[1] R. C. Baker, G. Harman, The Brun-Titchmarsh theorem on average. Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), Progr. Math. 138, Birkhäuser, Boston, MA, 1996, 39–103, | Zbl | MR

[2] R. C. Baker, G. Harman, Shifted primes without large prime factors. Acta Arith. 83 (1998), 331–361. | Zbl | MR

[3] P. Erdős, R. Murty, On the order of a(modp). Proc. 5th Canadian Number Theory Association Conf., Amer. Math. Soc., Providence, RI, 1999, 87–97. | Zbl

[4] P. Erdős, C. Stewart, On the greatest and least prime factors of n!+1. J. London Math. Soc. 13 (1976), 513–519. | Zbl | MR

[5] É. Fouvry, Théorème de Brun-Titchmarsh: Application au théorème de Fermat. Invent. Math. 79 (1985), 383–407. | Zbl | MR

[6] H.-K. Indlekofer, N. M. Timofeev, Divisors of shifted primes. Publ. Math. Debrecen 60 (2002), 307–345. | Zbl | MR

[7] F. Luca, I. E. Shparlinski, Prime divisors of shifted factorials. Bull. London Math. Soc. 37 (2005), 809–817. | Zbl | MR

[8] M.R. Murty, S. Wong, The ABC conjecture and prime divisors of the Lucas and Lehmer sequences. Number theory for the millennium, III (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, 43–54. | Zbl | MR

[9] F. Pappalardi, On the order of finitely generated subgroups of * ( mod p ) and divisors of p-1. J. Number Theory 57 (1996), 207–222. | Zbl | MR

[10] K. Prachar, Primzahlverteilung. Springer-Verlag, Berlin, 1957. | Zbl | MR

Cité par Sources :