Voir la notice de l'article provenant de la source Numdam
We give an Arakelov theoretic proof of the equality of conductor and discriminant.
Nous donnons une preuve utilisant la théorie d’Arakelov de l’égalité du conducteur et du discriminant.
@article{JTNB_2004__16_2_423_0, author = {\"Unver, Sinan}, title = {An {Arakelov} theoretic proof of the equality of conductor and discriminant}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {423--427}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {2}, year = {2004}, doi = {10.5802/jtnb.454}, zbl = {1078.14030}, mrnumber = {2143562}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.454/} }
TY - JOUR AU - Ünver, Sinan TI - An Arakelov theoretic proof of the equality of conductor and discriminant JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 423 EP - 427 VL - 16 IS - 2 PB - Université Bordeaux 1 UR - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.454/ DO - 10.5802/jtnb.454 LA - en ID - JTNB_2004__16_2_423_0 ER -
%0 Journal Article %A Ünver, Sinan %T An Arakelov theoretic proof of the equality of conductor and discriminant %J Journal de théorie des nombres de Bordeaux %D 2004 %P 423-427 %V 16 %N 2 %I Université Bordeaux 1 %U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.454/ %R 10.5802/jtnb.454 %G en %F JTNB_2004__16_2_423_0
Ünver, Sinan. An Arakelov theoretic proof of the equality of conductor and discriminant. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 2, pp. 423-427. doi : 10.5802/jtnb.454. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.454/
[Bloch] S. Bloch, Cycles on arithmetic schemes and Euler characteristics of curves. Proc. of Sympos. Pure Math. 46 (1987) AMS, 421–450. | Zbl | MR
[CPT] T. Chinburg, G. Pappas, M.J. Taylor, -constants and Arakelov Euler characteristics. Preprint, (1999).
[Deligne] P. Deligne, Le déterminant de la cohomologie. Contemp. Math. 67 (1987), 93–177. | Zbl | MR
[Falt] G. Faltings, Calculus on arithmetic surfaces. Ann. Math. 119 (1984), 387–424. | Zbl | MR
[Fulton] W. Fulton, Intersection theory. Springer-Verlag, Berlin, 1984. | Zbl | MR
[G-S] H. Gillet, C. Soulé, An arithmetic Riemann-Roch theorem. Invent. Math. 110 (1992), 473–543. | Zbl | MR
[M-B] L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques. Invent. Math. 98 (1989), 499–509. | Zbl | MR
[Mumf] D. Mumford, Stability of projective varieties. Einseign. Math. 23 (1977), 39–100. | Zbl | MR
[Saito] T. Saito, Conductor, discriminant, and the Noether formula of arithmetic surfaces. Duke Math. J. 57 (1988), 151–173. | Zbl | MR
Cité par Sources :