The exact order of discrepancy for Levin’s normal number in base 2
Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 3, pp. 999-1023

Voir la notice de l'article provenant de la source Numdam

Mordechay B. Levin in [4] has constructed a number α which is normal in base 2, and such that the sequence {2 n α} n=0,1,2,... has very small discrepancy D N . Indeed we have N·D N =𝒪(logN) 2 . That means, that α is normal of extremely high quality. In this paper we show that this estimate is best possible, i.e., N·D N c·(logN) 2 for infinitely many N.

Dans [4], Mordechay B. Levin a construit un nombre α qui est normal en base 2 et tel que la suite {2 n α} n=0,1,2,... a une très faible discrépance D N . En effet, nous avons N·D N =𝒪(logN) 2 . Cela signifie que α est un nombre normal de très haute qualité. Dans cet article, nous montrons que cette estimation est la meilleure possible, c’est-à-dire que N·D N c·(logN) 2 pour une infinité de N.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1271
Classification : 11K16, 11K38
Keywords: normal numbers, Levin’s number, uniform distribution of sequences, discrepancy

Hofer, Roswitha 1 ; Larcher, Gerhard 1

1 Institute of Financial Mathematics and Applied Number Theory, Johannes Kepler University Linz Altenbergerstraße 69, 4040 Linz, Austria
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2023__35_3_999_0,
     author = {Hofer, Roswitha and Larcher, Gerhard},
     title = {The exact order of discrepancy for {Levin{\textquoteright}s} normal number in base 2},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {999--1023},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {35},
     number = {3},
     year = {2023},
     doi = {10.5802/jtnb.1271},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1271/}
}
TY  - JOUR
AU  - Hofer, Roswitha
AU  - Larcher, Gerhard
TI  - The exact order of discrepancy for Levin’s normal number in base 2
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2023
SP  - 999
EP  - 1023
VL  - 35
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1271/
DO  - 10.5802/jtnb.1271
LA  - en
ID  - JTNB_2023__35_3_999_0
ER  - 
%0 Journal Article
%A Hofer, Roswitha
%A Larcher, Gerhard
%T The exact order of discrepancy for Levin’s normal number in base 2
%J Journal de théorie des nombres de Bordeaux
%D 2023
%P 999-1023
%V 35
%N 3
%I Société Arithmétique de Bordeaux
%U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1271/
%R 10.5802/jtnb.1271
%G en
%F JTNB_2023__35_3_999_0
Hofer, Roswitha; Larcher, Gerhard. The exact order of discrepancy for Levin’s normal number in base 2. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 3, pp. 999-1023. doi: 10.5802/jtnb.1271

Cité par Sources :