Voir la notice de l'article provenant de la source Numdam
In this paper, we prove explicit reciprocity laws for a class of formal Drinfeld modules having stable reduction of height one, in the spirit of those existing in characteristic zero (cf. the work of Wiles [13]). We begin by defining the Kummer pairing in the language of formal Drinfeld modules defined over local fields of positive characteristic. We then prove explicit formulas for this pairing in terms of the logarithm of the formal Drinfeld module, a certain Coleman power series, torsion points and the trace. Our results extend the explicit formulas already proved by Anglès [1] for Carlitz modules, and by Bars and Longhi [4] for sign-normalized rank one Drinfeld modules. The approach followed is similar to the ones followed in the previously mentioned papers [1, 4, 13], taking into account the subtleties derived from the fact that the formal Drinfeld modules considered are formal power series, and are no longer polynomials.
Dans cet article, nous prouvons des lois de réciprocité explicites pour une classe de modules de Drinfeld formels ayant une réduction stable de hauteur dans l’esprit de celles existant en caractéristique zéro (cf. le travail de Wiles [13]). Nous commençons par définir l’accouplement de Kummer dans le langage des modules de Drinfeld formels définis sur des corps locaux de caractéristique positive. Nous prouvons ensuite des formules explicites pour cet accouplement en termes du logarithme du module de Drinfeld formel, d’une certaine série de Coleman, de points de torsion et de la trace. Nos résultats étendent les formules explicites déjà prouvées par Anglès [1] pour les modules de Carlitz, et par Bars et Longhi [4] pour les modules de Drinfeld de rang un signe-normalisés. L’approche suivie est similaire à celle des articles précédemment mentionnés [1, 4, 13], en tenant compte des subtilités découlant du fait que les modules de Drinfeld formels considérés sont des séries formelles, et ne sont plus des polynômes.
Ala Eddine, Marwa 1
@article{JTNB_2023__35_3_675_0, author = {Ala Eddine, Marwa}, title = {Explicit {Reciprocity} {Laws} for {Formal} {Drinfeld} {Modules}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {675--695}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {35}, number = {3}, year = {2023}, doi = {10.5802/jtnb.1260}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1260/} }
TY - JOUR AU - Ala Eddine, Marwa TI - Explicit Reciprocity Laws for Formal Drinfeld Modules JO - Journal de théorie des nombres de Bordeaux PY - 2023 SP - 675 EP - 695 VL - 35 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1260/ DO - 10.5802/jtnb.1260 LA - en ID - JTNB_2023__35_3_675_0 ER -
%0 Journal Article %A Ala Eddine, Marwa %T Explicit Reciprocity Laws for Formal Drinfeld Modules %J Journal de théorie des nombres de Bordeaux %D 2023 %P 675-695 %V 35 %N 3 %I Société Arithmétique de Bordeaux %U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1260/ %R 10.5802/jtnb.1260 %G en %F JTNB_2023__35_3_675_0
Ala Eddine, Marwa. Explicit Reciprocity Laws for Formal Drinfeld Modules. Journal de théorie des nombres de Bordeaux, Tome 35 (2023) no. 3, pp. 675-695. doi: 10.5802/jtnb.1260
Cité par Sources :