Chromatic Selmer groups and arithmetic invariants of elliptic curves
Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.2, pp. 1103-1114.

Voir la notice de l'article provenant de la source Numdam

Chromatic Selmer groups are modified Selmer groups with local information for supersingular primes p. We sketch their role in establishing the p-primary part of the Birch–Swinnerton-Dyer formula in Sections 2–5, and then study the growth of the Mordell–Weil rank along the p 2 -extension of a quadratic imaginary number field in which p splits in Section 6.

Les groupes de Selmer chromatiques sont des modifications des groupes de Selmer, qui contiennent des informations locales pour les nombres premiers p supersinguliers. Dans les sections 2–5, on esquisse leur rôle dans la démonstration de la partie p-primaire de la formule de Birch et Swinnerton-Dyer, et ensuite, dans la section 6, on étudie la croissance du rang de Mordell–Weil le long de la p 2 -extension d’un corps quadratique imaginaire dans lequel p est décomposé.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1190
Classification : 11G40, 11R23, 14H52
Keywords: Elliptic curves, Selmer group, Mordell–Weil rank

Ito Sprung, Florian 1

1 School of Mathematical and Statistical Sciences Arizona State University Tempe, AZ 85287-1804, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2021__33_3.2_1103_0,
     author = {Ito Sprung, Florian},
     title = {Chromatic {Selmer} groups and arithmetic invariants of elliptic curves},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1103--1114},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {33},
     number = {3.2},
     year = {2021},
     doi = {10.5802/jtnb.1190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1190/}
}
TY  - JOUR
AU  - Ito Sprung, Florian
TI  - Chromatic Selmer groups and arithmetic invariants of elliptic curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2021
SP  - 1103
EP  - 1114
VL  - 33
IS  - 3.2
PB  - Société Arithmétique de Bordeaux
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1190/
DO  - 10.5802/jtnb.1190
LA  - en
ID  - JTNB_2021__33_3.2_1103_0
ER  - 
%0 Journal Article
%A Ito Sprung, Florian
%T Chromatic Selmer groups and arithmetic invariants of elliptic curves
%J Journal de théorie des nombres de Bordeaux
%D 2021
%P 1103-1114
%V 33
%N 3.2
%I Société Arithmétique de Bordeaux
%U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1190/
%R 10.5802/jtnb.1190
%G en
%F JTNB_2021__33_3.2_1103_0
Ito Sprung, Florian. Chromatic Selmer groups and arithmetic invariants of elliptic curves. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.2, pp. 1103-1114. doi : 10.5802/jtnb.1190. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1190/

[1] Agboola, Adebisi; Howard, Benjamin Anticyclotomic Iwasawa theory of CM elliptic curves. II, Math. Res. Lett., Volume 12 (2005) no. 5-6, pp. 611-621 | Zbl | MR | DOI

[2] Bertolini, Massimo Selmer groups and Heegner points in anticyclotomic Z p -extensions, Compos. Math., Volume 99 (1995) no. 2, pp. 153-182 | Zbl | MR

[3] Cai, Li; Li, Chao; Zhai, Shuai On the 2-part of the Birch and Swinnerton-Dyer conjecture for quadratic twists of elliptic curves, J. Lond. Math. Soc., Volume 101 (2020) no. 2, pp. 714-734 | arXiv | Zbl | MR | DOI

[4] Coates, John; Schneider, Peter; Sujatha, Ramdorai Links between cyclotomic and GL 2 Iwasawa theory, Doc. Math. (2003) no. Extra Vol., pp. 187-215 (Kazuya Kato’s fiftieth birthday) | Zbl | MR

[5] Coates, John H.; Ribet, Kenneth A.; Greenberg, Ralph; Rubin, Karl Arithmetic theory of elliptic curves, Lecture Notes in Mathematics, 1716, Springer, 1999, viii+234 pages Lectures given at the 3rd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, July 12–19, 1997 | MR | DOI

[6] Cornut, Christophe Mazur’s conjecture on higher Heegner points, Invent. Math., Volume 148 (2002) no. 3, pp. 495-523 | Zbl | MR | DOI

[7] Cuoco, Albert A.; Monsky, Paul Class numbers in Z p d -extensions, Math. Ann., Volume 255 (1981) no. 2, pp. 235-258 | Zbl | MR | DOI

[8] Greenberg, Ralph Iwasawa theory and p-adic deformations of motives, Motives (Seattle, WA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55, American Mathematical Society, 1994, pp. 193-223 | Zbl | MR

[9] Greenberg, Ralph Galois theory for the Selmer group of an abelian variety, Compos. Math., Volume 136 (2003) no. 3, pp. 255-297 | Zbl | MR | DOI

[10] Hachimori, Yoshitaka; Venjakob, Otmar Completely faithful Selmer groups over Kummer extensions, Doc. Math. (2003) no. Extra Vol., pp. 443-478 (Kazuya Kato’s fiftieth birthday) | Zbl | MR

[11] Hamidi, Parham; Ray, Jishnu Conjecture A and μ-invariant for Selmer groups of supersingular elliptic curves, J. Théor. Nombres Bordeaux, Volume 33 (2021) no. 3.1, pp. 853-886

[12] Hsieh, Ming-Lun Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields, J. Am. Math. Soc., Volume 27 (2014) no. 3, pp. 753-862 | Zbl | MR | DOI

[13] Hung, Pin-Chi; Lim, Meng Fai On the growth of Mordell-Weil ranks in p-adic Lie extensions (2019) (https://arxiv.org/abs/1902.01068)

[14] Kato, Kazuya p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | mathdoc-id | Zbl | MR

[15] Kim, Byoung Du Signed-Selmer groups over the p 2 -extension of an imaginary quadratic field, Can. J. Math., Volume 66 (2014) no. 4, pp. 826-843 | Zbl | MR | DOI

[16] Kings, Guido; Loeffler, David; Zerbes, Sarah Livia Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math., Volume 5 (2017) no. 1, pp. 1-122 | Zbl | MR | DOI

[17] Kobayashi, Shin-ichi Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | Zbl | MR | DOI

[18] Lei, Antonio Factorisation of two-variable p-adic L-functions, Can. Math. Bull., Volume 57 (2014) no. 4, pp. 845-852 | Zbl | MR | DOI

[19] Lei, Antonio; Ponsinet, Gautier On the Mordell–Weil ranks of supersingular abelian varieties in cyclotomic extensions, Proc. Am. Math. Soc., Ser. B, Volume 7 (2020), pp. 1-16 | Zbl | MR | DOI

[20] Lei, Antonio; Sprung, Florian Ranks of elliptic curves over p 2 -extensions, Isr. J. Math., Volume 236 (2020) no. 1, pp. 183-206 | Zbl | MR | DOI

[21] Loeffler, David; Zerbes, Sarah Livia Iwasawa theory and p-adic L-functions over p 2 -extensions, Int. J. Number Theory, Volume 10 (2014) no. 8, pp. 2045-2095 | Zbl | MR | DOI

[22] Longo, Matteo; Vigni, Stefano Plus/minus Heegner points and Iwasawa theory of elliptic curves at supersingular primes, Boll. Unione Mat. Ital., Volume 12 (2019) no. 3, pp. 315-347 | Zbl | MR | DOI

[23] Perrin-Riou, Bernadette Fonctions L p-adiques d’une courbe elliptique et points rationnels, Ann. Inst. Fourier, Volume 43 (1993) no. 4, pp. 945-995 | Zbl | mathdoc-id | DOI | MR

[24] Perrin-Riou, Bernadette Fonctions L p-adiques des représentations p-adiques, Astérisque, 229, Société Mathématique de France, 1995, 198 pages | mathdoc-id | MR

[25] Pollack, Robert On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J., Volume 118 (2003) no. 3, pp. 523-558 | Zbl | MR | DOI

[26] Rohrlich, David E. On L-functions of elliptic curves and cyclotomic towers, Invent. Math., Volume 75 (1984) no. 3, pp. 409-423 | Zbl | MR | DOI

[27] Skinner, Christopher Multiplicative reduction and the cyclotomic main conjecture for GL 2 , Pac. J. Math., Volume 283 (2016) no. 1, pp. 171-200 | Zbl | MR | DOI

[28] Skinner, Christopher; Urban, Eric The Iwasawa main conjectures for GL 2 , Invent. Math., Volume 195 (2014) no. 1, pp. 1-277 | Zbl | MR | DOI

[29] Sprung, Florian Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures, J. Number Theory, Volume 132 (2012) no. 7, pp. 1483-1506 | Zbl | MR | DOI

[30] Sprung, Florian The Šafarevič–Tate group in cyclotomic p -extensions at supersingular primes, J. Reine Angew. Math., Volume 681 (2013), pp. 199-218 | Zbl | MR

[31] Sprung, Florian The Iwasawa Main Conjecture for Elliptic Curves at odd supersingular primes (2016) (https://arxiv.org/abs/1610.10017, submitted)

[32] Sprung, Florian On pairs of p-adic L-functions for weight-two modular forms, Algebra Number Theory, Volume 11 (2017) no. 4, pp. 885-928 | Zbl | MR | DOI

[33] Van Order, Jeanine Some remarks on the two-variable main conjecture of Iwasawa theory for elliptic curves without complex multiplication, J. Algebra, Volume 350 (2012), pp. 273-299 | Zbl | MR | DOI

[34] Vatsal, Vinayak Special values of anticyclotomic L-functions, Duke Math. J., Volume 116 (2003) no. 2, pp. 219-261 | Zbl | MR | DOI

[35] Wan, Xin Iwasawa Main Conjecture and BSD Conjecture (2014) (https://arxiv.org/abs/1411.6352, submitted)

Cité par Sources :