Voir la notice de l'article provenant de la source Numdam
In the first part, we revisit Drinfeld modular curves associated to from the perfectoid point of view, and we show how to recover (a perfectized) part of the theory of overconvergent -adic Drinfeld modular forms. In the second part, we review open problems for families of Drinfeld modular forms for .
Dans la première partie, nous revenons sur les courbes modulaires de Drinfeld associée à en adoptant le point de vue perfectoïde, et nous montrons comment récupérer une portion (perfectisée) de la théorie des formes modulaires de Drinfeld -adiques surconvergentes. Dans la seconde partie, nous présentons quelques problèmes ouverts portant sur les familles de formes modulaires de Drinfeld pour .
Nicole, Marc-Hubert 1 ; Rosso, Giovanni 2
@article{JTNB_2021__33_3.2_1045_0, author = {Nicole, Marc-Hubert and Rosso, Giovanni}, title = {Perfectoid {Drinfeld} {Modular} {Forms}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1045--1067}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {33}, number = {3.2}, year = {2021}, doi = {10.5802/jtnb.1187}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1187/} }
TY - JOUR AU - Nicole, Marc-Hubert AU - Rosso, Giovanni TI - Perfectoid Drinfeld Modular Forms JO - Journal de théorie des nombres de Bordeaux PY - 2021 SP - 1045 EP - 1067 VL - 33 IS - 3.2 PB - Société Arithmétique de Bordeaux UR - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1187/ DO - 10.5802/jtnb.1187 LA - en ID - JTNB_2021__33_3.2_1045_0 ER -
%0 Journal Article %A Nicole, Marc-Hubert %A Rosso, Giovanni %T Perfectoid Drinfeld Modular Forms %J Journal de théorie des nombres de Bordeaux %D 2021 %P 1045-1067 %V 33 %N 3.2 %I Société Arithmétique de Bordeaux %U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1187/ %R 10.5802/jtnb.1187 %G en %F JTNB_2021__33_3.2_1045_0
Nicole, Marc-Hubert; Rosso, Giovanni. Perfectoid Drinfeld Modular Forms. Journal de théorie des nombres de Bordeaux, Tome 33 (2021) no. 3.2, pp. 1045-1067. doi : 10.5802/jtnb.1187. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1187/
[1] On the Atkin -operator for -invariant Drinfeld cusp forms, Int. J. Number Theory, Volume 14 (2018) no. 10, pp. 2599-2616 | MR | DOI | Zbl
[2] On the Atkin -operator for -invariant Drinfeld cusp forms, Proc. Am. Math. Soc., Volume 147 (2019) no. 10, pp. 4171-4187 | Zbl | MR | DOI
[3] On the structure and slopes of Drinfeld cusp forms (2019) (https://arxiv.org/abs/1812.02032, to appear in Exp. Math.)
[4] Drinfeld modular forms of arbitrary rank, Part I: Analytic Theory (2018) (https://arxiv.org/abs/1805.12335)
[5] Projectivity of the Witt vector affine Grassmannian, Invent. Math., Volume 209 (2017) no. 2, pp. 329-423 | Zbl | MR | DOI
[6] Overconvergent Hilbert modular forms via perfectoid modular varieties (2019) (https://arxiv.org/abs/1902.03985, to appear in Ann. Inst. Fourier)
[7] Hecke characters associated to Drinfeld modular forms, Compos. Math., Volume 151 (2015) no. 11, pp. 2006-2058 | Zbl | MR | DOI
[8] Cohomological theory of crystals over function fields, EMS Tracts in Mathematics, 9, European Mathematical Society, 2009 | DOI
[9] Eigenvarieties, -functions and Galois representations (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 59-120 | Zbl | MR | DOI
[10] Overconvergent modular forms and perfectoid Shimura curves, Doc. Math., Volume 22 (2017), pp. 191-262 | Zbl | MR
[11] -adic Banach spaces and families of modular forms, Invent. Math., Volume 127 (1997) no. 3, pp. 417-479 | Zbl | MR | DOI
[12] A new proof of a theorem of Hida, Int. Math. Res. Not., Volume 1999 (1999) no. 9, pp. 453-472 | Zbl | MR | DOI
[13] L’isomorphisme entre les tours de Lubin–Tate et de Drinfeld et applications cohomologiques, L’isomorphisme entre les tours de Lubin–Tate et de Drinfeld (Progress in Mathematics), Volume 262, Birkhäuser, 2008, pp. 1-325 | Zbl | MR
[14] de Rham cohomology and the Gauss–Manin connection for Drinfeld modules, -adic analysis (Trento, 1989) (Lecture Notes in Mathematics), Volume 1454, Springer, 1989, pp. 223-255 | Zbl | DOI
[15] Can a Drinfeld module be modular?, J. Ramanujan Math. Soc., Volume 17 (2002) no. 4, pp. 221-260 | Zbl | MR
[16] Local Shtukas, Hodge–Pink Structures and Galois Representations, -motives: Hodge structures, transcendence and other motivic aspects (EMS Series of Congress Reports), European Mathematical Society (2018) | Zbl
[17] Local Shtukas and divisible local Anderson modules, Can. J. Math., Volume 71 (2019) no. 5, pp. 1163-1207 | Zbl | MR | DOI
[18] On the compactification of the Drinfeld modular curve of level (2017) (to appear in J. Number Theory)
[19] Table of t-adic slopes on Drinfeld modular forms (2018) (http://www.comm.tcu.ac.jp/~shinh/)
[20] Duality of Drinfeld modules and -adic properties of Drinfeld modular forms, J. Lond. Math. Soc., Volume 103 (2021) no. 1, pp. 35-70 | Zbl | MR | DOI
[21] Explicit class field theory for rational function fields, Trans. Am. Math. Soc., Volume 189 (1974), pp. 77-91 | Zbl | MR | DOI
[22] Drinfeld modular curve and Weil pairing, J. Algebra, Volume 299 (2006) no. 1, pp. 374-418 | MR | DOI | Zbl
[23] -adic properties of modular schemes and modular forms, Modular functions of one variable, III (Lecture Notes in Mathematics), Volume 350, Springer, 1972, pp. 69-190 | Zbl | DOI
[24] Relative -adic Hodge theory: foundations, Astérisque, 371, Société Mathématique de France, 2015
[25] Relative -adic Hodge theory, II: Imperfect period rings (2016) (https://arxiv.org/abs/1602.06899)
[26] Der Satz von Remmert-Stein in der nichtarchimedischen Funktionentheorie, Math. Z., Volume 139 (1974), pp. 69-84 | Zbl | MR | DOI
[27] Towers of Drinfeld modular curves and special values of -functions, Ph. D. Thesis, Università degli studi di Milano (2007)
[28] Familles de formes modulaires de Drinfeld pour le groupe général linéaire, Trans. Am. Math. Soc., Volume 374 (2021) no. 6, pp. 4227-4266 | DOI | Zbl
[29] Compactification of Drinfeld modular varieties and Drinfeld modular forms of arbitrary rank, Manuscr. Math., Volume 140 (2013) no. 3-4, pp. 333-361 | Zbl | MR | DOI
[30] Perfectoid spaces, Publ. Math., Inst. Hautes Étud. Sci., Volume 116 (2012), pp. 245-313 | Zbl | MR | DOI
[31] -adic Hodge theory for rigid-analytic varieties, Forum Math. Pi, Volume 1 (2013), e1, 77 pages | Zbl | MR
[32] Perfectoid spaces: a survey, Current developments in mathematics 2012, International Press, 2013, pp. 193-227 | Zbl | MR
[33] On torsion in the cohomology of locally symmetric varieties, Ann. Math., Volume 182 (2015) no. 3, pp. 945-1066 | Zbl | MR | DOI
[34] Berkeley lectures on -adic geometry, 2014 (Lecture notes from course at UC Berkeley in Fall 2014, available at https://math.berkeley.edu/~jared/Math274/ScholzeLectures.pdf) | Zbl
[35] Stacks Project, 2018 (http://stacks.math.columbia.edu)
[36] Good reduction of elliptic modules, J. Math. Soc. Japan, Volume 34 (1982) no. 3, pp. 475-487 | MR | Zbl
Cité par Sources :