Cilleruelo conjectured that if of degree is irreducible over the rationals, then as . He proved it for the case . Very recently, Maynard and Rudnick proved there exists with , and showed one can take . We give an alternative proof of this result with the improved constant . We additionally prove the bound and make the stronger conjecture that as .
Cilleruelo a conjecturé que si de degré est irréductible sur les rationnels, alors quand . Il l’a prouvé dans le cas . Très récemment, Maynard et Rudnick ont prouvé qu’il existe tel que , et ont montré qu’on peut prendre . Nous donnons une preuve alternative de ce résultat avec la constante améliorée . De plus, nous prouvons la minoration et proposons une conjecture plus forte affirmant que quand .
Révisé le :
Accepté le :
Publié le :
Keywords: Least common multiple, polynomial sequence
Sah, Ashwin 1
CC-BY-ND 4.0
@article{JTNB_2020__32_3_891_0,
author = {Sah, Ashwin},
title = {An improved bound on the least common multiple of polynomial sequences},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {891--899},
year = {2020},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {32},
number = {3},
doi = {10.5802/jtnb.1146},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1146/}
}
TY - JOUR AU - Sah, Ashwin TI - An improved bound on the least common multiple of polynomial sequences JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 891 EP - 899 VL - 32 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1146/ DO - 10.5802/jtnb.1146 LA - en ID - JTNB_2020__32_3_891_0 ER -
%0 Journal Article %A Sah, Ashwin %T An improved bound on the least common multiple of polynomial sequences %J Journal de théorie des nombres de Bordeaux %D 2020 %P 891-899 %V 32 %N 3 %I Société Arithmétique de Bordeaux %U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1146/ %R 10.5802/jtnb.1146 %G en %F JTNB_2020__32_3_891_0
Sah, Ashwin. An improved bound on the least common multiple of polynomial sequences. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 891-899. doi: 10.5802/jtnb.1146
Cité par Sources :