Root number of twists of an elliptic curve
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 73-101.

Voir la notice de l'article provenant de la source Numdam

We give an explicit description of the behaviour of the root number in the family given by the twists of an elliptic curve E/ by the rational values of a polynomial f(T). In particular, we present a criterion for the family to have a constant root number over . This completes work by Rohrlich: we detail the behaviour of the root number when E has bad reduction over ab and we treat the cases j(E)=0,1728 which were not considered previously.

Nous donnons une description explicite du comportement du signe (root number) dans la famille des tordues d’une courbe elliptique E/ par les valeurs rationnelles d’un polynôme f(t). En particulier, nous présentons un critère pour que la famille ait un signe constant sur . Ceci complète un travail de Rohrlich  : nous donnons les détails du comportement du signe lorsque E a mauvaise réduction sur ab et nous traitons les cas j(E)=0,1728 qui n’étaient pas considérés précédemment.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1112
Classification : 11G05, 11G07
Keywords: elliptic curve, root number, twist

Desjardins, Julie 1

1 DH-3062, University of Toronto Mississauga 3359 Mississauga Road Mississauga, ON L5L 1C6, Canada
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2020__32_1_73_0,
     author = {Desjardins, Julie},
     title = {Root number of twists of an elliptic curve},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {73--101},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {1},
     year = {2020},
     doi = {10.5802/jtnb.1112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1112/}
}
TY  - JOUR
AU  - Desjardins, Julie
TI  - Root number of twists of an elliptic curve
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 73
EP  - 101
VL  - 32
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1112/
DO  - 10.5802/jtnb.1112
LA  - en
ID  - JTNB_2020__32_1_73_0
ER  - 
%0 Journal Article
%A Desjardins, Julie
%T Root number of twists of an elliptic curve
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 73-101
%V 32
%N 1
%I Société Arithmétique de Bordeaux
%U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1112/
%R 10.5802/jtnb.1112
%G en
%F JTNB_2020__32_1_73_0
Desjardins, Julie. Root number of twists of an elliptic curve. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 73-101. doi : 10.5802/jtnb.1112. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1112/

[1] Birch, Bryan J.; Stephens, Nelson M. The parity of the rank of the Mordell–Weil group, Topology, Volume 5 (1966), pp. 295-299 | DOI | Zbl | MR

[2] Cassels, J. W. S.; Schinzel, Andrzej Selmer’s conjecture and families of elliptic curves, Bull. Lond. Math. Soc., Volume 14 (1982) no. 4, pp. 345-348 | DOI | Zbl | MR

[3] Connell, Ian Calculating root numbers of elliptic curves over , Manuscr. Math., Volume 82 (1994) no. 1, pp. 93-104 | DOI | Zbl | MR

[4] Desjardins, Julie Densité des points rationnels sur les surfaces elliptiques et les surfaces de del Pezzo de degré 1, Ph. D. Thesis, Université Paris-Diderot - Paris VII (France) (2016) (http://www.theses.fr/2016USPCC229)

[5] Desjardins, Julie On the density of rational points on rational elliptic surfaces, Acta Arith., Volume 189 (2019) no. 2, pp. 109-146 | DOI | Zbl | MR

[6] Desjardins, Julie On the variation of the root number of the fibers of families of elliptic curves, J. Lond. Math. Soc., Volume 99 (2019) no. 2, pp. 295-331 | DOI | Zbl | MR

[7] Desjardins, Julie; Naskrȩcki, Bartosz Geometry of del Pezzo surfaces of the form y 2 =x 3 +Am 6 +Bn 6 (2019) (https://arxiv.org/abs/1911.02684)

[8] Dokchitser, Tim; Dokchitser, Vladimir Elliptic curves with all quadratic twists of positive rank, Acta Arith., Volume 137 (2009) no. 2, pp. 193-197 | DOI | Zbl | MR

[9] Halberstadt, Emmanuel Signes locaux des courbes elliptiques en 2 et 3, C. R. Math. Acad. Sci. Paris, Volume 326 (1998) no. 9, pp. 1047-1052 | DOI | Zbl | MR

[10] Huang, Zhizhong Rational points on elliptic K3 surfaces of quadratic twist type (2018) (https://arxiv.org/abs/1806.07869)

[11] Liverance, Eric A formula for the root number of a family of elliptic curves, J. Number Theory, Volume 51 (1995) no. 2, pp. 288-305 | DOI | Zbl | MR

[12] Rizzo, Ottavio G. Average root numbers for a nonconstant family of elliptic curves, Compos. Math., Volume 136 (2003) no. 1, pp. 1-23 | DOI | Zbl | MR

[13] Rohrlich, David E. Variation of the root number in families of elliptic curves, Compos. Math., Volume 87 (1993) no. 2, pp. 119-151 | mathdoc-id | Zbl | MR

[14] Rohrlich, David E. Galois theory, elliptic curves, and root numbers, Compos. Math., Volume 100 (1996) no. 3, pp. 311-349 | mathdoc-id | Zbl | MR

[15] Várilly-Alvarado, Anthony Density of rational points on isotrivial rational elliptic surfaces, Algebra Number Theory, Volume 5 (2011) no. 5, pp. 659-690 | DOI | Zbl | MR

Cité par Sources :