Voir la notice de l'article provenant de la source Numdam
Merel’s result on the strong uniform boundedness conjecture made it meaningful to classify the torsion part of the Mordell–Weil groups of all elliptic curves defined over number fields of fixed degree . In this paper, we discuss the cyclic torsion subgroup of elliptic curves over cubic number fields. For or , we show that is not a subgroup of for any elliptic curve over a cubic number field .
Le résultat de Merel sur la forme forte de la conjecture de borne uniforme a mis en valeur la classification des parties de torsion des groupes de Mordell–Weil des courbes elliptiques définies sur les corps de nombres de degré fixé . Dans cet article, nous étudions les sous-groupes de torsion cycliques des courbes elliptiques sur les corps de nombres cubiques. Pour ou , nous montrons que n’est pas un sous-groupe de pour toute courbe elliptique sur un corps de nombres cubique .
Wang, Jian 1
@article{JTNB_2019__31_3_663_0, author = {Wang, Jian}, title = {On the cyclic torsion of elliptic curves over cubic number fields {(II)}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {663--670}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1100}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1100/} }
TY - JOUR AU - Wang, Jian TI - On the cyclic torsion of elliptic curves over cubic number fields (II) JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 663 EP - 670 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1100/ DO - 10.5802/jtnb.1100 LA - en ID - JTNB_2019__31_3_663_0 ER -
%0 Journal Article %A Wang, Jian %T On the cyclic torsion of elliptic curves over cubic number fields (II) %J Journal de théorie des nombres de Bordeaux %D 2019 %P 663-670 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1100/ %R 10.5802/jtnb.1100 %G en %F JTNB_2019__31_3_663_0
Wang, Jian. On the cyclic torsion of elliptic curves over cubic number fields (II). Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 663-670. doi : 10.5802/jtnb.1100. http://geodesic.mathdoc.fr/articles/10.5802/jtnb.1100/
[1] Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 21, Springer, 1990 | Zbl
[2] A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, 2005 | MR | Zbl
[3] Two theorems on modular curves, Funkts. Anal. Prilozh., Volume 7 (1973) no. 2, pp. 83-84 | MR | Zbl
[4] Sporadic torsion, 2016 (http://www.mathcs.emory.edu/~dzb/slides/DZB-SERMON-cubic-torsion.pdf)
[5] Curves with infinitely many points of fixed degree, Isr. J. Math., Volume 85 (1994) no. 1, pp. 1-3 | MR | Zbl
[6] Kroneckerian model of fields of elliptic modular functions, Am. J. Math., Volume 81 (1959), pp. 561-577 | MR | DOI | Zbl
[7] Hyperelliptic modular curves, Tsukuba J. Math., Volume 15 (1991) no. 2, pp. 413-423 | MR | DOI | Zbl
[8] On the torsion of elliptic curves over cubic number fields, Acta Arith., Volume 113 (2004) no. 3, pp. 291-301 | MR | DOI | Zbl
[9] Torsion points on elliptic curves and q-coefficients of modular forms, Invent. Math., Volume 109 (1992) no. 2, pp. 221-229 | MR | DOI | Zbl
[10] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | mathdoc-id | Zbl
[11] Galois properties of torsion points on abelian varieties, Invent. Math., Volume 62 (1981) no. 3, pp. 481-502 | MR | DOI | Zbl
[12] Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J., Volume 109 (1988), pp. 125-149 | MR | DOI | Zbl
[13] Universal bounds on the torsion of elliptic curves, Proc. Lond. Math. Soc., Volume 33 (1976) no. 2, pp. 193-237 | MR | DOI | Zbl
[14] Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 19-66 | MR | Zbl
[15] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | DOI | mathdoc-id | Zbl
[16] Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., Volume 124 (1996) no. 1-3, pp. 437-449 | MR | DOI | Zbl
[17] Torsion of rational elliptic curves over cubic fields and sporadic points on , Math. Res. Lett., Volume 23 (2016) no. 1, pp. 245-272 | MR | DOI | Zbl
[18] Rational points on certain elliptic modular curves, Analytic Number Theory (Proceedings of Symposia in Pure Mathematics), Volume 1972, American Mathematical Society, 1972, pp. 221-231 | Zbl
[19] Diophantine equations and modular forms, Bull. Am. Math. Soc., Volume 81 (1975), pp. 14-27 | MR | Zbl
[20] Torsion des courbes elliptiques sur les corps cubiques, Ann. Inst. Fourier, Volume 50 (2000) no. 3, pp. 723-749 | MR | DOI | mathdoc-id | Zbl
[21] No 17-torsion on elliptic curves over cubic number fields, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 3, pp. 831-838 | MR | DOI | Zbl
[22] Schémas en groupes de type , Bull. Soc. Math. Fr., Volume 102 (1974), pp. 241-280 | MR | DOI | Zbl
[23] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, 1, Mathematical Society of Japan, 1971 | MR | Zbl
[24] Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, 1994 | MR | Zbl
[25] Group schemes of prime order, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970), pp. 1-21 | MR | DOI | mathdoc-id | Zbl
[26] Magma (http://magma.maths.usyd.edu.au/magma/)
[27] On the cyclic torsion of elliptic curves over cubic number fields, J. Number Theory, Volume 183 (2018), pp. 291-308 | MR | DOI | Zbl
[28] Abelian varieties over finite fields, Ann. Sci. Éc. Norm. Supér., Volume 2 (1969), pp. 521-560 | MR | DOI | mathdoc-id | Zbl
Cité par Sources :