Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations
[Analyse spectrale uniforme des équations de Fokker-Planck discrète, fractionnaire et classique]
Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 389-433.

Voir la notice de l'article provenant de la source Numdam

In this paper, we investigate the spectral analysis and long time asymptotic convergence of semigroups associated to discrete, fractional and classical Fokker-Planck equations in some regime where the corresponding operators are close. We successively deal with the discrete and the classical Fokker-Planck model, the fractional and the classical Fokker-Planck model and finally the discrete and the fractional Fokker-Planck model. In each case, we prove uniform spectral estimates using perturbation and/or enlargement arguments.

Dans cet article, nous nous intéressons à l’analyse spectrale et au comportement asymptotique en temps long des semi-groupes associés aux équations de Fokker-Planck discrète, fractionnaire et classique dans des régimes où les opérateurs correspondants sont proches. Nous traitons successivement les modèles de Fokker-Planck discret et classique, puis fractionnaire et classique et enfin discret et fractionnaire. Dans chaque cas, nous démontrons des estimations spectrales uniformes en utilisant des arguments de perturbation et/ou d’élargissement.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.46
Classification : 47G20, 35B40, 35Q84
Keywords: Fokker-Planck equation, fractional Laplacian, spectral gap, exponential rate of convergence, long-time asymptotic, semigroup, dissipativity
Mots-clés : Équation de Fokker-Planck, laplacien fractionnaire, trou spectral, taux de convergence exponentiel, asymptotique en temps long, semi-groupe, dissipativité

Mischler, Stéphane 1 ; Tristani, Isabelle 2

1 Université Paris-Dauphine, Institut Universitaire de France (IUF), PSL Research University, CNRS, UMR [7534], CEREMADE, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
2 Université Paris-Dauphine, PSL Research University, CNRS, UMR [7534], CEREMADE, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France.
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2017__4__389_0,
     author = {Mischler, St\'ephane and Tristani, Isabelle},
     title = {Uniform semigroup spectral analysis of the~discrete, fractional and classical {Fokker-Planck} equations},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {389--433},
     publisher = {\'Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.46},
     mrnumber = {3623358},
     zbl = {06754331},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.46/}
}
TY  - JOUR
AU  - Mischler, Stéphane
AU  - Tristani, Isabelle
TI  - Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2017
SP  - 389
EP  - 433
VL  - 4
PB  - École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jep.46/
DO  - 10.5802/jep.46
LA  - en
ID  - JEP_2017__4__389_0
ER  - 
%0 Journal Article
%A Mischler, Stéphane
%A Tristani, Isabelle
%T Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations
%J Journal de l’École polytechnique — Mathématiques
%D 2017
%P 389-433
%V 4
%I École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/jep.46/
%R 10.5802/jep.46
%G en
%F JEP_2017__4__389_0
Mischler, Stéphane; Tristani, Isabelle. Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 389-433. doi : 10.5802/jep.46. http://geodesic.mathdoc.fr/articles/10.5802/jep.46/

[1] Carrapatoso, K.; Mischler, S. Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation (2016) (to appear in Comm. Partial Differential Equations, hal-01011361) | Zbl

[2] Egaña Fernández, G.; Mischler, S. Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolic-elliptic case, Arch. Rational Mech. Anal., Volume 220 (2016) no. 3, pp. 1159-1194 | DOI | MR | Zbl

[3] Escobedo, M.; Mischler, S.; Rodriguez Ricard, M. On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 99-125 | DOI | mathdoc-id | MR | Zbl

[4] Gentil, I.; Imbert, C. The Lévy-Fokker-Planck equation: Φ-entropies and convergence to equilibrium, Asymptot. Anal., Volume 59 (2008) no. 3-4, pp. 125-138 | Zbl

[5] Gualdani, M. P.; Mischler, S.; Mouhot, C. Factorization of non-symmetric operators and exponential H-Theorem (2013) (hal-00495786) | Zbl

[6] Kavian, O.; Mischler, S. The Fokker-Planck equation with subcritical confinement force (2015) (hal-01241680)

[7] Mischler, S. Semigroups in Banach spaces, factorisation and spectral analysis (work in progress)

[8] Mischler, S.; Mouhot, C. Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, Comm. Math. Phys., Volume 288 (2009) no. 2, pp. 431-502 | DOI | MR | Zbl

[9] Mischler, S.; Mouhot, C. Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation, Arch. Rational Mech. Anal., Volume 221 (2016) no. 2, pp. 677-723 | DOI | MR | Zbl

[10] Mischler, S.; Quiñinao, C.; Touboul, J. On a kinetic Fitzhugh-Nagumo model of neuronal network, Comm. Math. Phys., Volume 342 (2016) no. 3, pp. 1001-1042 | DOI | MR | Zbl

[11] Mischler, S.; Scher, J. Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 33 (2016) no. 3, pp. 849-898 | MR | Zbl | DOI

[12] Mischler, S.; Weng, Q. On a linear runs and tumbles equation, Kinet. and Relat. Mod., Volume 10 (2017) no. 3, pp. 799-822 (hal-01272429) | DOI | MR | Zbl

[13] Mouhot, C. Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys., Volume 261 (2006) no. 3, pp. 629-672 | MR | Zbl | DOI

[14] Tristani, I. Fractional Fokker-Planck equation, Commun. Math. Sci., Volume 13 (2015) no. 5, pp. 1243-1260 | MR | Zbl | DOI

[15] Tristani, I. Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting, J. Funct. Anal., Volume 270 (2016) no. 5, pp. 1922-1970 | MR | Zbl | DOI

[16] Voigt, J. A perturbation theorem for the essential spectral radius of strongly continuous semigroups, Monatsh. Math., Volume 90 (1980) no. 2, pp. 153-161 | MR | Zbl | DOI

Cité par Sources :