Voir la notice de l'article provenant de la source Numdam
Given a periodic quotient of a torsion-free hyperbolic group, we provide a fine lower estimate of the growth function of any sub-semi-group. This generalizes results of Razborov and Safin for free groups.
Étant donné un quotient périodique d’un groupe hyperbolique sans torsion, nous donnons une estimation inférieure fine de la fonction de croissance pour chacun de tous ses sous-semi-groupes. Cet énoncé généralise des résultats de Razborov et Safin pour les groupes libres.
Coulon, Rémi 1 ; Steenbock, Markus 2
@article{JEP_2022__9__463_0, author = {Coulon, R\'emi and Steenbock, Markus}, title = {Product set growth in {Burnside} groups}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {463--504}, publisher = {\'Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.187}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.187/} }
TY - JOUR AU - Coulon, Rémi AU - Steenbock, Markus TI - Product set growth in Burnside groups JO - Journal de l’École polytechnique — Mathématiques PY - 2022 SP - 463 EP - 504 VL - 9 PB - École polytechnique UR - http://geodesic.mathdoc.fr/articles/10.5802/jep.187/ DO - 10.5802/jep.187 LA - en ID - JEP_2022__9__463_0 ER -
Coulon, Rémi; Steenbock, Markus. Product set growth in Burnside groups. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 463-504. doi : 10.5802/jep.187. http://geodesic.mathdoc.fr/articles/10.5802/jep.187/
[Adi79] The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb. (3), 95, Springer-Verlag, Berlin-New York, 1979 | MR | DOI
[AL06] A lower bound on the growth of word hyperbolic groups, J. London Math. Soc. (2), Volume 73 (2006) no. 1, pp. 109-125 | Zbl | MR | DOI
[Ata09] Uniform nonamenability of subgroups of free Burnside groups of odd period, Mat. Zametki, Volume 85 (2009) no. 4, pp. 516-523 | Zbl | MR | DOI
[BF21] On the joint spectral radius for isometries of non-positively curved spaces and uniform growth, Ann. Inst. Fourier (Grenoble), Volume 71 (2021) no. 1, pp. 317-391 | Zbl | MR | DOI
[BG08] On the spectral gap for finitely-generated subgroups of , Invent. Math., Volume 171 (2008) no. 1, pp. 83-121 | Zbl | MR | DOI
[BG12] A spectral gap theorem in , J. Eur. Math. Soc. (JEMS), Volume 14 (2012) no. 5, pp. 1455-1511 | Zbl | MR | DOI
[BGT12] The structure of approximate groups, Publ. Math. Inst. Hautes Études Sci., Volume 116 (2012), pp. 115-221 | Zbl | MR | DOI
[BH99] Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | DOI
[Bow08] Tight geodesics in the curve complex, Invent. Math., Volume 171 (2008) no. 2, pp. 281-300 | Zbl | MR | DOI
[But13] Explicit Helfgott type growth in free products and in limit groups, J. Algebra, Volume 389 (2013), pp. 61-77 | Zbl | MR | DOI
[CDP90] Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lect. Notes in Math., 1441, Springer-Verlag, Berlin, 1990 | DOI
[Cha08] Product theorems in and , J. Inst. Math. Jussieu, Volume 7 (2008) no. 1, pp. 1-25 | MR | DOI
[Cou13] Growth of periodic quotients of hyperbolic groups, Algebraic Geom. Topol., Volume 13 (2013) no. 6, pp. 3111-3133 | Zbl | MR | DOI
[Cou14] On the geometry of Burnside quotients of torsion free hyperbolic groups, Internat. J. Algebra Comput., Volume 24 (2014) no. 3, pp. 251-345 | Zbl | MR | DOI
[Cou16] Partial periodic quotients of groups acting on a hyperbolic space, Ann. Inst. Fourier (Grenoble), Volume 66 (2016) no. 5, pp. 1773-1857 | Zbl | MR | DOI
[Cou18a] Detecting trivial elements of periodic quotient of hyperbolic groups, Bull. Soc. math. France, Volume 146 (2018) no. 4, pp. 745-806 | Zbl | MR | DOI
[Cou18b] Infinite periodic groups of even exponents, 2018 | arXiv
[DG08] Courbure mésoscopique et théorie de la toute petite simplification, J. Topology, Volume 1 (2008) no. 4, pp. 804-836 | Zbl | DOI
[DGO17] Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc., 245, no. 1156, American Mathematical Society, Providence, RI, 2017
[DS20] Product set growth in groups and hyperbolic geometry, J. Topology, Volume 13 (2020) no. 3, pp. 1183-1215 | Zbl | MR | DOI
[FS20] The rates of growth in a hyperbolic group, 2020 | arXiv
[GdlH90] Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Math., 83 (1990) | DOI
[Gro87] Hyperbolic groups, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | MR | Zbl | DOI
[Hel08] Growth and generation in , Ann. of Math. (2), Volume 167 (2008) no. 2, pp. 601-623 | MR | DOI
[IO96] Hyperbolic groups and their quotients of bounded exponents, Trans. Amer. Math. Soc., Volume 348 (1996) no. 6, pp. 2091-2138 | MR | DOI
[Iva94] The free Burnside groups of sufficiently large exponents, Internat. J. Algebra Comput., Volume 4 (1994) no. 1-2, pp. 1-308 | Zbl | MR | DOI
[Ker21] Product set growth in mapping class groups, 2021 | arXiv
[Kou98] Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 5, pp. 1441-1453 | Zbl | MR | DOI
[Lys96] Infinite Burnside groups of even period, Izv. Akad. Nauk SSSR Ser. Mat., Volume 60 (1996) no. 3, pp. 3-224 | DOI
[Nat96] Additive number theory. Inverse problems and the geometry of sumsets, Graduate Texts in Math., 165, Springer-Verlag, New York, 1996 | DOI
[Ol’82] The Novikov-Adyan theorem, Mat. Sb. (N.S.), Volume 118 (1982) no. 2, p. 203-235, 287 | MR
[Ol’91] Periodic quotient groups of hyperbolic groups, Mat. Sb. (N.S.), Volume 182 (1991) no. 4, pp. 543-567
[Osi07] Uniform non-amenability of free Burnside groups, Arch. Math. (Basel), Volume 88 (2007) no. 5, pp. 403-412 | MR | Zbl | DOI
[Raz14] A product theorem in free groups, Ann. of Math. (2), Volume 179 (2014) no. 2, pp. 405-429 | Zbl | MR | DOI
[Saf11] Powers of subsets of free groups, Mat. Sb. (N.S.), Volume 202 (2011) no. 11, pp. 97-102 | DOI
[Sel97] Acylindrical accessibility for groups, Invent. Math., Volume 129 (1997) no. 3, pp. 527-565 | Zbl | MR | DOI
[Tao08] Product set estimates for non-commutative groups, Combinatorica, Volume 28 (2008) no. 5, pp. 547-594 | Zbl | MR | DOI
[Tao10] Freiman’s theorem for solvable groups, Contrib. Discrete Math., Volume 5 (2010) no. 2, pp. 137-184 | Zbl | MR
[TV06] Additive combinatorics, Cambridge Studies in Advanced Math., 105, Cambridge University Press, Cambridge, 2006 | DOI
Cité par Sources :