Derivation of nonlinear Gibbs measures from many-body quantum mechanics
[Dérivation de mesures de Gibbs non linéaires comme limites d’un modèle de mécanique quantique à N corps]
Journal de l’École polytechnique — Mathématiques, Tome 2 (2015), pp. 65-115.

Voir la notice de l'article provenant de la source Numdam

We prove that nonlinear Gibbs measures can be obtained from the corresponding many-body, grand-canonical, quantum Gibbs states, in a mean-field limit where the temperature T diverges and the interaction strength behaves as 1/T. We proceed by characterizing the interacting Gibbs state as minimizing a functional counting the free-energy relatively to the non-interacting case. We then perform an infinite-dimensional analogue of phase-space semiclassical analysis, using fine properties of the quantum relative entropy, the link between quantum de Finetti measures and upper/lower symbols in a coherent state basis, as well as Berezin-Lieb type inequalities. Our results cover the measure built on the defocusing nonlinear Schrödinger functional on a finite interval, as well as smoother interactions in dimensions d2.

Nous prouvons que certaines mesures de Gibbs non linéaires peuvent être obtenues à partir des états de Gibbs grand-canoniques du problème à N corps, dans une limite de champ moyen où la température T diverge et la constante de couplage se comporte comme 1/T. Nous commençons par caractériser les états de Gibbs en présence d’interactions comme minimiseurs d’une fonctionnelle comptant l’énergie libre relativement au cas sans interaction. Nous procédons ensuite à un analogue en dimension infinie d’une analyse semi-classique, en utilisant des propriétés fines de l’entropie relative quantique, le lien entre mesures de de Finetti et symboles supérieurs/inférieurs dans une base d’états cohérents, ainsi que des inégalités de type Berezin-Lieb. Nos résultats couvrent la mesure construite à partir de la fonctionnelle de Schrödinger non linéaire défocalisante sur un intervalle fini, ainsi que le cas d’interactions plus régulières en dimension supérieure.

DOI : 10.5802/jep.18
Classification : 81V70, 35Q40
Keywords: Many-body quantum mechanics, Bose-Einstein condensation, mean-field limit, non-linear Schrödinger equation, non-linear Gibbs measure, quantum de Finetti theorem
Mots-clés : Mécanique quantique à $N$ corps, condensation de Bose-Einstein, limite de champ moyen, équation de Schrödinger non linéaire, mesure de Gibbs non linéaire, théorème de de Finetti quantique

Lewin, Mathieu 1 ; Nam, Phan Thành 2 ; Rougerie, Nicolas 3

1 CNRS & Université Paris-Dauphine, CEREMADE (UMR 7534) Place de Lattre de Tassigny, F-75775 Paris Cedex 16, France
2 IST Austria Am Campus 1, 3400 Klosterneuburg, Austria
3 Université Grenoble 1 & CNRS, LPMMC (UMR 5493) B.P. 166, F-38042 Grenoble, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2015__2__65_0,
     author = {Lewin, Mathieu and Nam, Phan Th\`anh and Rougerie, Nicolas},
     title = {Derivation of nonlinear {Gibbs} measures from many-body quantum mechanics},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {65--115},
     publisher = {\'Ecole polytechnique},
     volume = {2},
     year = {2015},
     doi = {10.5802/jep.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.18/}
}
TY  - JOUR
AU  - Lewin, Mathieu
AU  - Nam, Phan Thành
AU  - Rougerie, Nicolas
TI  - Derivation of nonlinear Gibbs measures from many-body quantum mechanics
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2015
SP  - 65
EP  - 115
VL  - 2
PB  - École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jep.18/
DO  - 10.5802/jep.18
LA  - en
ID  - JEP_2015__2__65_0
ER  - 
%0 Journal Article
%A Lewin, Mathieu
%A Nam, Phan Thành
%A Rougerie, Nicolas
%T Derivation of nonlinear Gibbs measures from many-body quantum mechanics
%J Journal de l’École polytechnique — Mathématiques
%D 2015
%P 65-115
%V 2
%I École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/jep.18/
%R 10.5802/jep.18
%G en
%F JEP_2015__2__65_0
Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas. Derivation of nonlinear Gibbs measures from many-body quantum mechanics. Journal de l’École polytechnique — Mathématiques, Tome 2 (2015), pp. 65-115. doi : 10.5802/jep.18. http://geodesic.mathdoc.fr/articles/10.5802/jep.18/

[1] Albeverio, S.; Høegh-Krohn, R. The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time, J. Functional Analysis, Volume 16 (1974), pp. 39-82 | Zbl | MR

[2] Ammari, Z. Systèmes hamiltoniens en théorie quantique des champs : dynamique asymptotique et limite classique (2013) (Habilitation à diriger des recherches, Université de Rennes I)

[3] Ammari, Z.; Nier, F. Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, Volume 9 (2008), pp. 1503-1574 | DOI | Zbl | MR

[4] Ammari, Z.; Nier, F. Mean field limit for bosons and propagation of Wigner measures, J. Math. Phys., Volume 50 (2009) no. 4, pp. 042107 | Zbl | MR

[5] Ammari, Z.; Nier, F. Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., Volume 95 (2011) no. 6, pp. 585-626 | Zbl | MR

[6] Bach, V.; Lieb, E. H.; Solovej, J. P. Generalized Hartree-Fock theory and the Hubbard model, J. Statist. Phys., Volume 76 (1994) no. 1-2, pp. 3-89 | Zbl | MR

[7] Benguria, R.; Lieb, E. H. Proof of the stability of highly negative ions in the absence of the Pauli principle, Phys. Rev. Lett., Volume 50 (1983), pp. 1771-1774 | DOI

[8] Berezin, F. A. Convex functions of operators, Mat. Sb. (N.S.), Volume 88(130) (1972), pp. 268-276 | Zbl | MR

[9] Bogachev, V. I. Gaussian measures, Mathematical Surveys and Monographs, 62, American Mathematical Society, Providence, RI, 1998 | Zbl | MR

[10] Bourgain, J. Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., Volume 166 (1994) no. 1, pp. 1-26 http://projecteuclid.org/... | Zbl | MR

[11] Bourgain, J. Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys., Volume 176 (1996), pp. 421-445 | Zbl | MR

[12] Bourgain, J. Invariant measures for the Gross-Piatevskii equation, J. Math. Pures Appl., Volume 76 (1997) no. 8, p. 649-02 http://www.sciencedirect.com/... | DOI | Zbl | MR

[13] Bourgain, J. Invariant measures for NLS in infinite volume, Comm. Math. Phys., Volume 210 (2000) no. 3, pp. 605-620 | DOI | Zbl | MR

[14] Burq, N.; Thomann, L.; Tzvetkov, N. Long time dynamics for the one dimensional non linear Schrödinger equation, Ann. Inst. Fourier (Grenoble), Volume 63 (2013) no. 6, pp. 2137-2198 | MR | mathdoc-id

[15] Burq, N.; Tzvetkov, N. Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475 | DOI | Zbl | MR

[16] Carlen, E.; Sims, R.; Ueltschi, D. Trace inequalities and quantum entropy: an introductory course, Entropy and the Quantum (Contemp. Math.), Volume 529, American Mathematical Society, Providence, RI, 2010, pp. 73-140 | Zbl | MR

[17] Carlen, E.; Fröhlich, J.; Lebowitz, J. L. Exponential relaxation to equilibrium for a one-dimensional focusing non-linear Schrödinger equation with noise (2014) (arXiv:1409.2327)

[18] Chiribella, G. On quantum estimation, quantum cloning and finite quantum de Finetti theorems, Theory of Quantum Computation, Communication, and Cryptography (Lect. Notes in Computer Science), Volume 6519, Springer, 2011 | MR

[19] Christandl, M.; König, R.; Mitchison, G.; Renner, R. One-and-a-half quantum de Finetti theorems, Comm. Math. Phys., Volume 273 (2007) no. 2, pp. 473-498 | DOI | Zbl | MR

[20] Colliander, J.; Oh, T. Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L 2 (𝕋), Duke Math. J., Volume 161 (2012) no. 3, pp. 367-414 | DOI | Zbl | MR

[21] Combescure, M.; Robert, D. Coherent states and applications in mathematical physics, Theoretical and Mathematical Physics, Springer, Dordrecht, 2012, pp. xiv+415 | DOI | Zbl | MR

[22] de Suzzoni, A.-S. Invariant measure for the cubic wave equation on the unit ball of 3 , Dyn. Partial Differ. Equ., Volume 8 (2011) no. 2, pp. 127-147 | Zbl | MR

[23] Dolbeault, J.; Felmer, P.; Loss, M.; Paturel, E. Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems, J. Funct. Anal., Volume 238 (2006) no. 1, pp. 193-220 | Zbl | MR

[24] Glimm, J.; Jaffe, A. Quantum physics: a functional integral point of view, Springer-Verlag, 1987 | Zbl | MR

[25] Gottlieb, A. D. Examples of bosonic de Finetti states over finite dimensional Hilbert spaces, J. Statist. Phys., Volume 121 (2005) no. 3-4, pp. 497-509 | DOI | Zbl | MR

[26] Gottlieb, A. D.; Schumm, T. Quantum noise thermometry for bosonic Josephson junctions in the mean-field regime, Phys. Rev. A, Volume 79 (2009), pp. 063601 http://link.aps.org/doi/10.1103/PhysRevA.79.063601 | DOI

[27] Grech, P.; Seiringer, R. The excitation spectrum for weakly interacting bosons in a trap, Comm. Math. Phys., Volume 322 (2013) no. 2, pp. 559-591 | DOI | Zbl | MR

[28] Guerra, F.; Rosen, L.; Simon, B. The P(φ) 2 Euclidean quantum field theory as classical statistical mechanics. I, II, Ann. of Math. (2), Volume 101 (1975), p. 111-189; ibid. (2) 101 (1975), 191–259 | MR

[29] Hainzl, C.; Lewin, M.; Solovej, J. P. The thermodynamic limit of quantum Coulomb systems. Part II. Applications, Adv. Math., Volume 221 (2009), pp. 488-546 | DOI | Zbl | MR

[30] Harrow, A. The church of the symmetric subspace (2013) (arXiv:1308.6595)

[31] Hudson, R. L.; Moody, G. R. Locally normal symmetric states and an analogue of de Finetti’s theorem, Z. Wahrsch. Verw. Gebiete, Volume 33 (1975/76) no. 4, pp. 343-351 | Zbl | MR

[32] Juliá-Díaz, B.; Gottlieb, A. D.; Martorell, J.; Polls, A. Quantum and thermal fluctuations in bosonic Josephson junctions, Phys. Rev. A, Volume 88 (2013), pp. 033601 http://link.aps.org/doi/10.1103/PhysRevA.88.033601 | DOI

[33] Knowles, A. Limiting dynamics in large quantum systems, Doctoral thesis, ETH Zürich, 2009

[34] Lebowitz, J. L.; Rose, H. A.; Speer, E. R. Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys., Volume 50 (1988) no. 3-4, pp. 657-687 | DOI | Zbl | MR

[35] Lewin, M. Geometric methods for nonlinear many-body quantum systems, J. Funct. Anal., Volume 260 (2011), pp. 3535-3595 | DOI | Zbl | MR

[36] Lewin, M.; Nam, P. T.; Rougerie, N. Derivation of Hartree’s theory for generic mean-field Bose systems, Adv. Math., Volume 254 (2014), pp. 570-621 | DOI | MR

[37] Lewin, M.; Nam, P. T.; Rougerie, N. The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases (2014) (to appear in TRAAM, http://arxiv.org/abs/1405.3220)

[38] Lewin, M.; Nam, P. T.; Rougerie, N. Remarks on the quantum de Finetti theorem for bosonic systems, Appl. Math. Res. Express. AMRX, Volume 1 (2015), pp. 48-63 | DOI | MR

[39] Lewin, M.; Sabin, J. A family of monotone quantum relative entropies, Lett. Math. Phys., Volume 104 (2014) no. 6, pp. 691-705 | DOI | Zbl | MR

[40] Lieb, E. H. The classical limit of quantum spin systems, Comm. Math. Phys., Volume 31 (1973), pp. 327-340 | Zbl | MR

[41] Lieb, E. H. Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. Math., Volume 11 (1973), pp. 267-288 | Zbl | MR

[42] Lieb, E. H.; Ruskai, M. B. A fundamental property of quantum-mechanical entropy, Phys. Rev. Lett., Volume 30 (1973), pp. 434-436 | MR

[43] Lieb, E. H.; Ruskai, M. B. Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys., Volume 14 (1973), pp. 1938-1941 (With an appendix by B. Simon) | MR

[44] Lieb, E. H.; Seiringer, R.; Solovej, J. P.; Yngvason, J. The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, Birkhäuser, 2005 | Zbl | MR

[45] Lieb, E. H.; Seiringer, R.; Yngvason, J. Justification of c-number substitutions in bosonic Hamiltonians, Phys. Rev. Lett., Volume 94 (2005), pp. 080401 http://link.aps.org/... | DOI

[46] Lieb, E. H.; Yau, H.-T. The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys., Volume 112 (1987) no. 1, pp. 147-174 | Zbl | MR

[47] Lörinczi, J.; Hiroshima, F.; Betz, V. Feynman-Kac-type theorems and Gibbs measures on path space: with applications to rigorous quantum field theory, de Gruyter Studies in Math., Walter de Gruyter, 2011 http://books.google.fr/books?id=5va_PAAACAAJ | Zbl | MR

[48] Nelson, E. Construction of quantum fields from Markoff fields, J. Funct. Anal., Volume 12 (1973) no. 1, pp. 97 -112 http://www.sciencedirect.com/... | DOI | Zbl | MR

[49] Nelson, E. The free Markoff field, J. Funct. Anal., Volume 12 (1973), pp. 211-227 | Zbl | MR

[50] Oh, T.; Quastel, J. On invariant Gibbs measures conditioned on mass and momentum, J. Math. Soc. Japan, Volume 65 (2013) no. 1, pp. 13-35 http://jlc.jst.go.jp/DN/JST.JSTAGE/jmath/65.13 | Zbl | MR

[51] Ohya, M.; Petz, D. Quantum entropy and its use, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1993, pp. viii+335 | DOI | Zbl | MR

[52] Petz, D. Monotonicity of quantum relative entropy revisited, Rev. Math. Phys., Volume 15 (2003) no. 1, pp. 79-91 | DOI | Zbl | MR

[53] Rougerie, N. Théorèmes de de Finetti, limites de champ moyen et condensation de Bose-Einstein (2014) (Lecture notes)

[54] Ruelle, D. Statistical mechanics. Rigorous results, World Scientific & Imperial College Press, 1999 | Zbl | MR

[55] Simon, B. The P ( φ ) 2 Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J., 1974, pp. xx+392 (Princeton Series in Physics) | Zbl | MR

[56] Simon, B. Trace ideals and their applications, LMS Lecture Note Series, 35, Cambridge University Press, Cambridge, 1979, pp. viii+134 | Zbl | MR

[57] Simon, B. The classical limit of quantum partition functions, Comm. Math. Phys., Volume 71 (1980) no. 3, pp. 247-276 | Zbl | MR

[58] Skorokhod, A. V. Integration in Hilbert space, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 1974 | Zbl | MR

[59] Stinespring, W. F. Positive functions on C * -algebras, Proc. Amer. Math. Soc., Volume 6 (1955) no. 2, pp. 211-216 http://www.jstor.org/stable/2032342 | Zbl | MR

[60] Størmer, E. Symmetric states of infinite tensor products of C * -algebras, J. Funct. Anal., Volume 3 (1969), pp. 48-68 | Zbl | MR

[61] Summers, S. J. A perspective on constructive quantum field theory (2012) (arXiv:1203.3991)

[62] Thomann, L.; Tzvetkov, N. Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity, Volume 23 (2010) no. 11, pp. 2771 http://stacks.iop.org/0951-7715/23/i=11/a=003 | Zbl | MR

[63] Tzvetkov, N. Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 7, pp. 2543-2604 | Zbl | MR | mathdoc-id

[64] Velo, G.; Wightman, A. S. Constructive quantum field theory: The 1973 Ettore Majorana international school of mathematical physics, Lect. Notes in Physics, Springer-Verlag, 1973 | MR

[65] Wehrl, A. General properties of entropy, Rev. Modern Phys., Volume 50 (1978) no. 2, pp. 221-260 | MR

Cité par Sources :