Voir la notice de l'article provenant de la source Numdam
We prove that a metric measure space equipped with a Dirichlet form admitting an Euclidean heat kernel is necessarily isometric to the Euclidean space. This helps us providing an alternative proof of Colding’s celebrated almost rigidity volume theorem via a quantitative version of our main result. We also discuss the case of a metric measure space equipped with a Dirichlet form admitting a spherical heat kernel.
Nous prouvons qu’un espace métrique mesuré équipé d’une forme de Dirichlet admettant un noyau de la chaleur euclidien est nécessairement isométrique à l’espace euclidien. Nous en déduisons une preuve alternative du célèbre théorème de presque rigidité du volume de Colding grâce à une version quantitative de notre résultat principal. Nous traitons aussi le cas d’un espace métrique mesuré équipé d’une forme de Dirichlet admettant un noyau de la chaleur sphérique.
Carron, Gilles 1 ; Tewodrose, David 2
@article{JEP_2022__9__101_0, author = {Carron, Gilles and Tewodrose, David}, title = {A rigidity result for metric measure spaces with {Euclidean} heat kernel}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {101--154}, publisher = {\'Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.179}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.179/} }
TY - JOUR AU - Carron, Gilles AU - Tewodrose, David TI - A rigidity result for metric measure spaces with Euclidean heat kernel JO - Journal de l’École polytechnique — Mathématiques PY - 2022 SP - 101 EP - 154 VL - 9 PB - École polytechnique UR - http://geodesic.mathdoc.fr/articles/10.5802/jep.179/ DO - 10.5802/jep.179 LA - en ID - JEP_2022__9__101_0 ER -
%0 Journal Article %A Carron, Gilles %A Tewodrose, David %T A rigidity result for metric measure spaces with Euclidean heat kernel %J Journal de l’École polytechnique — Mathématiques %D 2022 %P 101-154 %V 9 %I École polytechnique %U http://geodesic.mathdoc.fr/articles/10.5802/jep.179/ %R 10.5802/jep.179 %G en %F JEP_2022__9__101_0
Carron, Gilles; Tewodrose, David. A rigidity result for metric measure spaces with Euclidean heat kernel. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 101-154. doi : 10.5802/jep.179. http://geodesic.mathdoc.fr/articles/10.5802/jep.179/
[ACDM15] Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, Variational methods for evolving objects (Adv. Stud. Pure Math.), Volume 67, Mathematical Society of Japan, Tokyo, 2015, pp. 1-58 | Zbl | MR | DOI
[ACT21] weights and compactness of conformal metrics under curvature bounds, Anal. PDE, Volume 14 (2021) no. 7, pp. 2163-2205 | DOI
[AFP00] Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 2000 | Zbl
[AGG19] Harmonic functions on metric measure spaces, Rev. Mat. Univ. Complut. Madrid, Volume 32 (2019) no. 1, pp. 141-186 | Zbl | MR | DOI
[AH12] Spherical harmonics and approximations on the unit sphere: an introduction, Lect. Notes in Math., 2044, Springer, Heidelberg, 2012 | Zbl | MR | DOI
[AT04] Topics on analysis in metric spaces, Oxford Lecture Series in Math. and its Applications, 25, Oxford University Press, Oxford, 2004 | Zbl | MR
[BBI01] A course in metric geometry, Graduate Studies in Math., 33, American Mathematical Society, Providence, RI, 2001, xiv+415 pages | MR | DOI
[BD59] Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A., Volume 45 (1959), pp. 208-215 | Zbl | DOI
[Car19] Geometric inequalities for manifolds with Ricci curvature in the Kato class, Ann. Inst. Fourier (Grenoble), Volume 69 (2019) no. 7, pp. 3095-3167 http://aif.cedram.org/... | Zbl | mathdoc-id | MR | DOI
[CC97] On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., Volume 46 (1997) no. 3, pp. 406-480 http://projecteuclid.org/euclid.jdg/1214459974 | Zbl | MR
[Che99] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 428-517 | Zbl | MR | DOI
[CM97] Harmonic functions on manifolds, Ann. of Math. (2), Volume 146 (1997) no. 3, pp. 725-747 | Zbl | MR | DOI
[Coh07] Numerical methods for Laplace transform inversion, Numerical Methods and Algorithms, 5, Springer, New York, 2007 | MR | Zbl
[Col97] Ricci curvature and volume convergence, Ann. of Math. (2), Volume 145 (1997) no. 3, pp. 477-501 | Zbl | MR | DOI
[CY81] A lower bound for the heat kernel, Comm. Pure Appl. Math., Volume 34 (1981) no. 4, pp. 465-480 | Zbl | MR | DOI
[FOT11] Dirichlet forms and symmetric Markov processes, De Gruyter Studies in Math., 19, Walter de Gruyter & Co., Berlin, 2011 | MR | Zbl
[GG09] Harmonic functions on metric measure spaces: convergence and compactness, Potential Anal., Volume 31 (2009) no. 3, pp. 203-214 | Zbl | MR | DOI
[Gri91] The heat equation on noncompact Riemannian manifolds, Mat. Sb., Volume 182 (1991) no. 1, pp. 55-87 | Zbl
[Gri94] Integral maximum principle and its applications, Proc. Roy. Soc. Edinburgh Sect. A, Volume 124 (1994) no. 2, pp. 353-362 | Zbl | MR | DOI
[Gri10] Heat kernels on metric measure spaces with regular volume growth, Handbook of geometric analysis, No. 2 (Adv. Lect. Math. (ALM)), Volume 13, Int. Press, Somerville, MA, 2010, pp. 1-60 | Zbl | MR
[Gro07] Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007 | Zbl
[Hei01] Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 | Zbl | DOI
[HKX16] Harmonic functions on metric measure spaces, 2016 | arXiv
[Hon15] Ricci curvature and -convergence, J. reine angew. Math., Volume 705 (2015), pp. 85-154 | Zbl | MR | DOI
[Hua11] Harmonic functions of polynomial growth on singular spaces with nonnegative Ricci curvature, Proc. Amer. Math. Soc., Volume 139 (2011) no. 6, pp. 2191-2205 | Zbl | MR | DOI
[KZ12] Geometry and analysis of Dirichlet forms, Adv. Math., Volume 231 (2012) no. 5, pp. 2755-2801 | Zbl | MR | DOI
[LTW97] Sharp bounds for the Green’s function and the heat kernel, Math. Res. Lett., Volume 4 (1997) no. 4, pp. 589-602 | Zbl | MR | DOI
[LY86] On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986) no. 3-4, pp. 153-201 | DOI
[MP49] Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math., Volume 1 (1949), pp. 242-256 | Zbl | MR | DOI
[RS80] Methods of modern mathematical physics I. Functional analysis, Academic Press, Inc., New York, 1980 | Zbl
[SC92] A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices (1992) no. 2, pp. 27-38 | Zbl | DOI
[Stu94] Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and -Liouville properties, J. reine angew. Math., Volume 456 (1994), pp. 173-196 | Zbl | MR | DOI
[Stu95] Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Volume 32 (1995) no. 2, pp. 275-312 http://projecteuclid.org/euclid.ojm/1200786053 | Zbl | MR
[Stu96] Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), Volume 75 (1996) no. 3, pp. 273-297 | Zbl | MR
[tERS07] Small time asymptotics of diffusion processes, J. Evol. Equ., Volume 7 (2007) no. 1, pp. 79-112 | Zbl | MR | DOI
Cité par Sources :