A rigidity result for metric measure spaces with Euclidean heat kernel
[Un résultat de rigidité pour les espaces métriques mesurés à noyau de la chaleur euclidien]
Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 101-154.

Voir la notice de l'article provenant de la source Numdam

We prove that a metric measure space equipped with a Dirichlet form admitting an Euclidean heat kernel is necessarily isometric to the Euclidean space. This helps us providing an alternative proof of Colding’s celebrated almost rigidity volume theorem via a quantitative version of our main result. We also discuss the case of a metric measure space equipped with a Dirichlet form admitting a spherical heat kernel.

Nous prouvons qu’un espace métrique mesuré équipé d’une forme de Dirichlet admettant un noyau de la chaleur euclidien est nécessairement isométrique à l’espace euclidien. Nous en déduisons une preuve alternative du célèbre théorème de presque rigidité du volume de Colding grâce à une version quantitative de notre résultat principal. Nous traitons aussi le cas d’un espace métrique mesuré équipé d’une forme de Dirichlet admettant un noyau de la chaleur sphérique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.179
Classification : 35K08, 31C25, 53C23, 53C21
Keywords: Heat kernel, harmonic functions, asymptotic cone
Mots-clés : Noyau de la chaleur, fonctions harmoniques, cône asymptotique

Carron, Gilles 1 ; Tewodrose, David 2

1 Université de Nantes, Département de Mathématiques 2 rue de la Houssinière, BP 92208, 44322 Nantes cedex 03, France
2 CY Cergy Paris University, AGM 2 av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2022__9__101_0,
     author = {Carron, Gilles and Tewodrose, David},
     title = {A rigidity result for metric measure spaces with {Euclidean} heat kernel},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {101--154},
     publisher = {\'Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.179},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.179/}
}
TY  - JOUR
AU  - Carron, Gilles
AU  - Tewodrose, David
TI  - A rigidity result for metric measure spaces with Euclidean heat kernel
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 101
EP  - 154
VL  - 9
PB  - École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jep.179/
DO  - 10.5802/jep.179
LA  - en
ID  - JEP_2022__9__101_0
ER  - 
%0 Journal Article
%A Carron, Gilles
%A Tewodrose, David
%T A rigidity result for metric measure spaces with Euclidean heat kernel
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 101-154
%V 9
%I École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/jep.179/
%R 10.5802/jep.179
%G en
%F JEP_2022__9__101_0
Carron, Gilles; Tewodrose, David. A rigidity result for metric measure spaces with Euclidean heat kernel. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 101-154. doi : 10.5802/jep.179. http://geodesic.mathdoc.fr/articles/10.5802/jep.179/

[ACDM15] Ambrosio, Luigi; Colombo, Maria; Di Marino, Simone Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, Variational methods for evolving objects (Adv. Stud. Pure Math.), Volume 67, Mathematical Society of Japan, Tokyo, 2015, pp. 1-58 | Zbl | MR | DOI

[ACT21] Aldana, Clara L.; Carron, Gilles; Tapie, Samuel A weights and compactness of conformal metrics under L n/2 curvature bounds, Anal. PDE, Volume 14 (2021) no. 7, pp. 2163-2205 | DOI

[AFP00] Ambrosio, Luigi; Fusco, Nicola; Pallara, Diego Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs, The Clarendon Press, Oxford University Press, New York, 2000 | Zbl

[AGG19] Adamowicz, Tomasz; Gaczkowski, Michał; Górka, Przemysław Harmonic functions on metric measure spaces, Rev. Mat. Univ. Complut. Madrid, Volume 32 (2019) no. 1, pp. 141-186 | Zbl | MR | DOI

[AH12] Atkinson, Kendall; Han, Weimin Spherical harmonics and approximations on the unit sphere: an introduction, Lect. Notes in Math., 2044, Springer, Heidelberg, 2012 | Zbl | MR | DOI

[AT04] Ambrosio, Luigi; Tilli, Paolo Topics on analysis in metric spaces, Oxford Lecture Series in Math. and its Applications, 25, Oxford University Press, Oxford, 2004 | Zbl | MR

[BBI01] Burago, Dmitri; Burago, Yuri; Ivanov, Sergei A course in metric geometry, Graduate Studies in Math., 33, American Mathematical Society, Providence, RI, 2001, xiv+415 pages | MR | DOI

[BD59] Beurling, A.; Deny, J. Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A., Volume 45 (1959), pp. 208-215 | Zbl | DOI

[Car19] Carron, Gilles Geometric inequalities for manifolds with Ricci curvature in the Kato class, Ann. Inst. Fourier (Grenoble), Volume 69 (2019) no. 7, pp. 3095-3167 http://aif.cedram.org/... | Zbl | mathdoc-id | MR | DOI

[CC97] Cheeger, Jeff; Colding, Tobias H. On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., Volume 46 (1997) no. 3, pp. 406-480 http://projecteuclid.org/euclid.jdg/1214459974 | Zbl | MR

[Che99] Cheeger, Jeff Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 428-517 | Zbl | MR | DOI

[CM97] Colding, Tobias H.; Minicozzi, William P. II Harmonic functions on manifolds, Ann. of Math. (2), Volume 146 (1997) no. 3, pp. 725-747 | Zbl | MR | DOI

[Coh07] Cohen, Alan M. Numerical methods for Laplace transform inversion, Numerical Methods and Algorithms, 5, Springer, New York, 2007 | MR | Zbl

[Col97] Colding, Tobias H. Ricci curvature and volume convergence, Ann. of Math. (2), Volume 145 (1997) no. 3, pp. 477-501 | Zbl | MR | DOI

[CY81] Cheeger, Jeff; Yau, Shing Tung A lower bound for the heat kernel, Comm. Pure Appl. Math., Volume 34 (1981) no. 4, pp. 465-480 | Zbl | MR | DOI

[FOT11] Fukushima, Masatoshi; Oshima, Yoichi; Takeda, Masayoshi Dirichlet forms and symmetric Markov processes, De Gruyter Studies in Math., 19, Walter de Gruyter & Co., Berlin, 2011 | MR | Zbl

[GG09] Gaczkowski, Michał; Górka, Przemysław Harmonic functions on metric measure spaces: convergence and compactness, Potential Anal., Volume 31 (2009) no. 3, pp. 203-214 | Zbl | MR | DOI

[Gri91] Grigor’yan, Alexander A. The heat equation on noncompact Riemannian manifolds, Mat. Sb., Volume 182 (1991) no. 1, pp. 55-87 | Zbl

[Gri94] Grigor’yan, Alexander A. Integral maximum principle and its applications, Proc. Roy. Soc. Edinburgh Sect. A, Volume 124 (1994) no. 2, pp. 353-362 | Zbl | MR | DOI

[Gri10] Grigor’yan, Alexander A. Heat kernels on metric measure spaces with regular volume growth, Handbook of geometric analysis, No. 2 (Adv. Lect. Math. (ALM)), Volume 13, Int. Press, Somerville, MA, 2010, pp. 1-60 | Zbl | MR

[Gro07] Gromov, Misha Metric structures for Riemannian and non-Riemannian spaces, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007 | Zbl

[Hei01] Heinonen, Juha Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 | Zbl | DOI

[HKX16] Hua, Bobo; Kell, Martin; Xia, Chao Harmonic functions on metric measure spaces, 2016 | arXiv

[Hon15] Honda, Shouhei Ricci curvature and L p -convergence, J. reine angew. Math., Volume 705 (2015), pp. 85-154 | Zbl | MR | DOI

[Hua11] Hua, Bobo Harmonic functions of polynomial growth on singular spaces with nonnegative Ricci curvature, Proc. Amer. Math. Soc., Volume 139 (2011) no. 6, pp. 2191-2205 | Zbl | MR | DOI

[KZ12] Koskela, Pekka; Zhou, Yuan Geometry and analysis of Dirichlet forms, Adv. Math., Volume 231 (2012) no. 5, pp. 2755-2801 | Zbl | MR | DOI

[LTW97] Li, Peter; Tam, Luen-Fai; Wang, Jiaping Sharp bounds for the Green’s function and the heat kernel, Math. Res. Lett., Volume 4 (1997) no. 4, pp. 589-602 | Zbl | MR | DOI

[LY86] Li, Peter; Yau, Shing-Tung On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986) no. 3-4, pp. 153-201 | DOI

[MP49] Minakshisundaram, S.; Pleijel, A. Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math., Volume 1 (1949), pp. 242-256 | Zbl | MR | DOI

[RS80] Reed, Michael; Simon, Barry Methods of modern mathematical physics I. Functional analysis, Academic Press, Inc., New York, 1980 | Zbl

[SC92] Saloff-Coste, L. A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices (1992) no. 2, pp. 27-38 | Zbl | DOI

[Stu94] Sturm, Karl-Theodor Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p -Liouville properties, J. reine angew. Math., Volume 456 (1994), pp. 173-196 | Zbl | MR | DOI

[Stu95] Sturm, Karl-Theodor Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Volume 32 (1995) no. 2, pp. 275-312 http://projecteuclid.org/euclid.ojm/1200786053 | Zbl | MR

[Stu96] Sturm, Karl-Theodor Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), Volume 75 (1996) no. 3, pp. 273-297 | Zbl | MR

[tERS07] ter Elst, A. F. M.; Robinson, Derek W.; Sikora, Adam Small time asymptotics of diffusion processes, J. Evol. Equ., Volume 7 (2007) no. 1, pp. 79-112 | Zbl | MR | DOI

Cité par Sources :