Voir la notice de l'article provenant de la source Numdam
The statement and the proof of Theorem B in [BZ20] are not complete, except when the boundary datum vanishes identically. We give here the correct version of the statement as well as a complete proof.
L’énoncé et la preuve du théorème B dans [BZ20] ne sont pas complets, sauf dans le cas où la donnée au bord s’annule identiquement. Nous donnons ici la version correcte de l’énoncé ainsi qu’une démonstration complète.
Benali, Amel 1 ; Zeriahi, Ahmed 2
@article{JEP_2021__8__779_0, author = {Benali, Amel and Zeriahi, Ahmed}, title = {Erratum to {{\textquotedblleft}The} {H\"older} continuous subsolution theorem for complex {Hessian} equations{\textquotedblright}}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {779--789}, publisher = {\'Ecole polytechnique}, volume = {8}, year = {2021}, doi = {10.5802/jep.157}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.157/} }
TY - JOUR AU - Benali, Amel AU - Zeriahi, Ahmed TI - Erratum to “The Hölder continuous subsolution theorem for complex Hessian equations” JO - Journal de l’École polytechnique — Mathématiques PY - 2021 SP - 779 EP - 789 VL - 8 PB - École polytechnique UR - http://geodesic.mathdoc.fr/articles/10.5802/jep.157/ DO - 10.5802/jep.157 LA - en ID - JEP_2021__8__779_0 ER -
%0 Journal Article %A Benali, Amel %A Zeriahi, Ahmed %T Erratum to “The Hölder continuous subsolution theorem for complex Hessian equations” %J Journal de l’École polytechnique — Mathématiques %D 2021 %P 779-789 %V 8 %I École polytechnique %U http://geodesic.mathdoc.fr/articles/10.5802/jep.157/ %R 10.5802/jep.157 %G en %F JEP_2021__8__779_0
Benali, Amel; Zeriahi, Ahmed. Erratum to “The Hölder continuous subsolution theorem for complex Hessian equations”. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 779-789. doi : 10.5802/jep.157. http://geodesic.mathdoc.fr/articles/10.5802/jep.157/
[BZ20] The Hölder continuous subsolution theorem for complex Hessian equations, J. Éc. polytech. Math., Volume 7 (2020), pp. 981-1007 | Zbl | DOI
[GKZ08] Hölder continuous solutions to Monge-Ampére equations, Bull. London Math. Soc., Volume 40 (2008) no. 6, pp. 1070-1080 | Zbl | DOI
[Lu12] Équations hessiennes complexes, Ph. D. Thesis, Université de Toulouse 3 (2012) | theses.fr
[Ngu12] Subsolution theorem for the complex Hessian equation, Univ. Iagel. Acta Math., Volume 50 (2012), pp. 69-88 | MR | Zbl
[Zer20] Remarks on the modulus of continuity of subharmonic functions, 2020 | arXiv
Cité par Sources :