On the rational motivic homotopy category
[Sur la catégorie 𝔸 1 -homotopique rationnelle]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 533-583.

Voir la notice de l'article provenant de la source Numdam

We study the structure of the rational motivic stable homotopy category over general base schemes. Our first class of results concerns the six operations: we prove absolute purity, stability of constructible objects, and Grothendieck–Verdier duality for SH . Next, we prove that SH is canonically SL-oriented; we compare SH with the category of rational Milnor–Witt motives; and we relate the rational bivariant 𝔸 1 -theory to Chow–Witt groups. These results are derived from analogous statements for the minus part of SH[1/2].

Dans ce travail, nous étudions la structure de la catégorie 𝔸 1 -homotopique stable rationnelle sur une base arbitraire. Notre première famille de résultats concerne les six opérations : nous prouvons la pureté absolue, la stabilité des objets constructibles et la dualité de Grothendieck-Verdier pour cette catégorie. Dans un deuxième temps, nous prouvons que la catégorie 𝔸 1 -homotopique stable rationnelle est canoniquement SL-orientée et la comparons à la catégorie des motifs rationnels de Milnor-Witt. Cela permet de calculer les groupes d’𝔸 1 -homotopie stable bivariants en termes des groupes de Chow-Witt supérieurs. Ces résultats s’obtiennent à partir d’énoncés analogues pour la partie négative de la catégorie 𝔸 1 -homotopique stable 2-localisée.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.153
Classification : 14F42, 19E15, 19G12, 11E81, 14C25, 14C35
Keywords: Motivic homotopy, motivic cohomology, six operations, Chow-Witt groups, K-theory, hermitian K-theory
Mots-clés : Théorie $\mathbb{A}^1$-homotopique, cohomologie motivique, six opérations, groupes de Chow-Witt, K-théorie, K-théorie hermitienne

Déglise, Frédéric 1 ; Fasel, Jean 2 ; Jin, Fangzhou 3 ; Khan, Adeel A. 4

1 ENS de Lyon, UMPA, UMR 5669 46 allée d’Italie, 69364 Lyon Cedex 07, France
2 Institut Fourier - UMR 5582, Université Grenoble-Alpes CS 40700, 38058 Grenoble Cedex 9, France
3 School of Mathematical Sciences, Tongji University Siping Road 1239, 200092 Shanghai, China
4 Institut des Hautes Études Scientifiques 35 route de Chartres, 91440 Bures-sur-Yvette, France and Institute of Mathematics, Academia Sinica Taipei 10617, Taiwan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JEP_2021__8__533_0,
     author = {D\'eglise, Fr\'ed\'eric and Fasel, Jean and Jin, Fangzhou and Khan, Adeel A.},
     title = {On the rational motivic homotopy category},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {533--583},
     publisher = {\'Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.153},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.153/}
}
TY  - JOUR
AU  - Déglise, Frédéric
AU  - Fasel, Jean
AU  - Jin, Fangzhou
AU  - Khan, Adeel A.
TI  - On the rational motivic homotopy category
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 533
EP  - 583
VL  - 8
PB  - École polytechnique
UR  - http://geodesic.mathdoc.fr/articles/10.5802/jep.153/
DO  - 10.5802/jep.153
LA  - en
ID  - JEP_2021__8__533_0
ER  - 
%0 Journal Article
%A Déglise, Frédéric
%A Fasel, Jean
%A Jin, Fangzhou
%A Khan, Adeel A.
%T On the rational motivic homotopy category
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 533-583
%V 8
%I École polytechnique
%U http://geodesic.mathdoc.fr/articles/10.5802/jep.153/
%R 10.5802/jep.153
%G en
%F JEP_2021__8__533_0
Déglise, Frédéric; Fasel, Jean; Jin, Fangzhou; Khan, Adeel A. On the rational motivic homotopy category. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 533-583. doi : 10.5802/jep.153. http://geodesic.mathdoc.fr/articles/10.5802/jep.153/

[AGV73] Artin, M.; Grothendieck, A.; Verdier, J.-L. Théorie des topos et cohomologie étale des schémas, Lect. Notes in Math., 269, 270, 305, Springer-Verlag, 1972–1973 Séminaire de Géométrie Algébrique du Bois–Marie 1963–64 (SGA 4)

[ALP17] Ananyevskiy, A.; Levine, M.; Panin, I. Witt sheaves and the η-inverted sphere spectrum, J. Topology, Volume 10 (2017) no. 2, pp. 370-385 | Zbl | MR | DOI

[Ana19] Ananyevskiy, A. SL-oriented cohomology theories, 2019 | arXiv

[Ayo07] Ayoub, J. Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, Astérisque, 314-315, Société Mathématique de France, Paris, 2007 | Zbl | mathdoc-id

[Ayo14] Ayoub, J. La réalisation étale et les opérations de Grothendieck, Ann. Sci. École Norm. Sup. (4), Volume 47 (2014) no. 1, pp. 1-145 | Zbl | DOI

[Bac18] Bachmann, T. Motivic and real étale stable homotopy theory, Compositio Math., Volume 154 (2018) no. 5, pp. 883-917 | DOI | Zbl | MR

[Bal01] Balmer, P. Witt cohomology, Mayer-Vietoris, homotopy invariance and the Gersten conjecture, K-Theory, Volume 23 (2001) no. 1, pp. 15-30 | Zbl | MR | DOI

[Bal05] Balmer, P. Witt groups, Handbook of K-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 539-576 | Zbl | MR | DOI

[BBD82] Beĭlinson, A. A.; Bernstein, J.; Deligne, Pierre Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Société Mathématique de France, Paris, 1982, pp. 5-171 | Zbl | MR

[BCD + 20] Bachmann, T.; Calmès, B.; Déglise, F.; Fasel, J.; Østvær, P. A. Milnor-Witt motives, 2020 | arXiv

[BD17] Bondarko, Mikhail; Déglise, Frédéric Dimensional homotopy t-structures in motivic homotopy theory, Adv. Math., Volume 311 (2017), pp. 91-189 | Zbl | MR | DOI

[BF18] Bachmann, Tom; Fasel, Jean On the effectivity of spectra representing motivic cohomology theories, 2018 | arXiv

[BGPW02] Balmer, Paul; Gille, Stefan; Panin, Ivan; Walter, Charles The Gersten conjecture for Witt groups in the equicharacteristic case, Doc. Math., Volume 7 (2002), pp. 203-217 | Zbl | MR

[BH21] Bachmann, Tom; Hoyois, Marc Norms in motivic homotopy theory, Astérisque, Société Mathématique de France, Paris, 2021 (to appear)

[BO74] Bloch, S.; Ogus, A. Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4), Volume 7 (1974) no. 4, pp. 181-201 | Zbl | MR | DOI

[Bon14] Bondarko, Mikhail Weights for relative motives: relation with mixed complexes of sheaves, Internat. Math. Res. Notices (2014) no. 17, pp. 4715-4767 | Zbl | MR | DOI

[BW02] Balmer, P.; Walter, C. A Gersten-Witt spectral sequence for regular schemes, Ann. Sci. École Norm. Sup. (4), Volume 35 (2002) no. 1, pp. 127-152 | Zbl | mathdoc-id | MR | DOI

[CD15] Cisinski, D.-C.; Déglise, Frédéric Integral mixed motives in equal characteristics, Doc. Math. (2015), pp. 145-194 (Extra volume: Alexander S. Merkurjev’s sixtieth birthday) | Zbl | MR

[CD16] Cisinski, D.-C.; Déglise, Frédéric Étale motives, Compositio Math., Volume 152 (2016) no. 3, pp. 556-666 | Zbl | DOI

[CD19] Cisinski, D.-C.; Déglise, Frédéric Triangulated categories of mixed motives, Springer Monographs in Math., Springer, Cham, 2019 | Zbl | DOI

[CDH + 20a] Calmès, B.; Dotto, E.; Harpaz, J.; Hebestreit, F.; Land, M.; Moi, K.; Nardin, D.; Nikolaus, T.; Steimle, W. Hermitian K-theory for stable -categories I: Foundations, 2020 | arXiv

[CDH + 20b] Calmès, B.; Dotto, E.; Harpaz, J.; Hebestreit, F.; Land, M.; Moi, K.; Nardin, D.; Nikolaus, T.; Steimle, W. Hermitian K-theory for stable -categories II: Cobordism categories and additivity, 2020 | arXiv

[CDH + 20c] Calmès, B.; Dotto, E.; Harpaz, J.; Hebestreit, F.; Land, M.; Moi, K.; Nardin, D.; Nikolaus, T.; Steimle, W. Hermitian K-theory for stable -categories III: Grothendieck-Witt groups of rings, 2020 | arXiv

[CF14] Calmès, B.; Fasel, Jean Finite Chow-Witt correspondences, 2014 | arXiv

[Cis19] Cisinski, D.-C. Cohomological methods in intersection theory (2019) (arXiv:1905.03478)

[CTHK97] Colliot-Thélène, J.-L.; Hoobler, R.; Kahn, B. The Bloch-Ogus-Gabber theorem, Algebraic K-theory (Toronto, ON, 1996) (Fields Inst. Commun.), Volume 16, American Mathematical Society, Proovidence, RI, 1997, pp. 31-94 | Zbl | MR

[Del77] Deligne, Pierre Cohomologie étale, Lect. Notes in Math., 569, Springer-Verlag, 1977 (Séminaire de Géométrie Algébrique du Bois–Marie SGA 41 2)

[Del87] Deligne, Pierre Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemp. Math.), Volume 67, American Mathematical Society, Providence, RI, 1987, pp. 93-177 | Zbl | DOI

[DF20] Déglise, Frédéric; Fasel, Jean The Borel character, 2020 | arXiv

[DFJK19] Déglise, Frédéric; Fasel, Jean; Jin, Fangzhou; Khan, Adeel A. Borel isomorphism and absolute purity, 2019 | arXiv

[DJK21] Déglise, Frédéric; Jin, Fangzhou; Khan, Adeel A. Fundamental classes in motivic homotopy theory, J. Eur. Math. Soc. (JEMS) (2021) (to appear)

[Dég18a] Déglise, Frédéric Bivariant theories in motivic stable homotopy, Doc. Math., Volume 23 (2018), pp. 997-1076 | Zbl | MR

[Dég18b] Déglise, Frédéric Orientation theory in arithmetic geometry, K-Theory—Proceedings of the International Colloquium (Mumbai, 2016), Hindustan Book Agency, New Delhi, 2018, pp. 239-347 | Zbl

[EHK + 20] Elmanto, Elden; Hoyois, Marc; Khan, Adeel A.; Sosnilo, Vladimir; Yakerson, Maria Modules over algebraic cobordism, Forum Math. Pi, Volume 8 (2020), e14, 44 pages | MR | DOI

[EK20a] Elmanto, Elden; Khan, Adeel A. Perfection in motivic homotopy theory, Proc. London Math. Soc. (3), Volume 120 (2020) no. 1, pp. 28-38 | Zbl | MR | DOI

[EK20b] Elmanto, Elden; Kolderup, Håkon On modules over motivic ring spectra, Ann. K-Theory, Volume 5 (2020) no. 2, pp. 327-355 | Zbl | MR | DOI

[EKM08] Elman, R.; Karpenko, N.; Merkurjev, A. The algebraic and geometric theory of quadratic forms, AMS Colloquium Publications, 56, American Mathematical Society, Providence, RI, 2008 | Zbl | MR

[Fas08] Fasel, Jean Groupes de Chow-Witt, Mém. Soc. Math. France (N.S.), 113, Société Mathématique de France, Paris, 2008 | Zbl | mathdoc-id | MR

[Fel19] Feld, N. Morel homotopy modules and Milnor-Witt cycle modules, 2019 | arXiv

[Fel20] Feld, N. Milnor-Witt cycle modules, J. Pure Appl. Algebra, Volume 224 (2020) no. 7, p. 41 | Zbl | MR | DOI

[FS09] Fasel, Jean; Srinivas, V. Chow-Witt groups and Grothendieck-Witt groups of regular schemes, Adv. Math., Volume 221 (2009) no. 1, pp. 302-329 | Zbl | MR | DOI

[Fuj02] Fujiwara, K. A proof of the absolute purity conjecture (after Gabber), Algebraic geometry 2000, Azumino (Hotaka) (Adv. Stud. Pure Math.), Volume 36, Math. Soc. Japan, Tokyo, 2002, pp. 153-183 | Zbl | MR | DOI

[Ful98] Fulton, W. Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1998 | Zbl | MR

[Gar19] Garkusha, Grigory Reconstructing rational stable motivic homotopy theory, Compositio Math., Volume 155 (2019) no. 7, pp. 1424-1443 | Zbl | MR | DOI

[Gil07] Gille, S. A graded Gersten-Witt complex for schemes with a dualizing complex and the Chow group, J. Pure Appl. Algebra, Volume 208 (2007) no. 2, pp. 391-419 | Zbl | MR | DOI

[Gro64] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Publ. Math. Inst. Hautes Études Sci., Volume 20 (1964), pp. 5-259 | DOI

[Gro77] Grothendieck, A. Cohomologie -adique et fonctions L, Lect. Notes in Math., 589, Springer-Verlag, 1977 Séminaire de Géométrie Algébrique du Bois–Marie 1965–66 (SGA 5)

[Har66] Hartshorne, Robin Residues and duality, Lect. Notes in Math., 20, Springer-Verlag, Berlin-New York, 1966 | Zbl | MR

[Hoy14] Hoyois, Marc A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula, Algebraic Geom. Topol., Volume 14 (2014) no. 6, pp. 3603-3658 | Zbl | MR | DOI

[Héb11] Hébert, D. Structure de poids à la Bondarko sur les motifs de Beilinson, Compositio Math., Volume 147 (2011) no. 5, pp. 1447-1462 | Zbl | MR | DOI

[ILO14] Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents (Illusie, L.; Laszlo, Y.; Orgogozo, F., eds.), Astérisque, 363-364, Société Mathématique de France, Paris, 2014 | Zbl

[Jac17] Jacobson, J. Real cohomology and the powers of the fundamental ideal in the Witt ring, Ann. K-Theory, Volume 2 (2017) no. 3, pp. 357-385 | Zbl | MR | DOI

[Jin16] Jin, Fangzhou Borel–Moore motivic homology and weight structure on mixed motives, Math. Z., Volume 283 (2016) no. 3, pp. 1149-1183 | Zbl | MR | DOI

[Kha16] Khan, Adeel A. Motivic homotopy theory in derived algebraic geometry, Ph. D. Thesis, Universität Duisburg-Essen (2016) https://www.preschema.com/thesis/thesis.pdf

[Kha19] Khan, Adeel A. Virtual fundamental classes of derived stacks I, 2019 | arXiv

[Kha21] Khan, Adeel A. Voevodsky’s criterion for constructible categories of coefficients (2021) (Preprint, available at https://www.preschema.com/papers/six.pdf)

[Kne77] Knebusch, M. Symmetric bilinear forms over algebraic varieties, Conference on Quadratic Forms—1976 (Kingston, Ont., 1976) (Queen’s Papers in Pure and Appl. Math.), Volume 46, 1977, pp. 103-283 | Zbl

[Lam05] Lam, T. Y. Introduction to quadratic forms over fields, Graduate Studies in Math., 67, American Mathematical Society, Providence, RI, 2005 | Zbl | MR

[Lur09] Lurie, Jacob Higher topos theory, Annals of Math. Studies, 170, Princeton University Press, Princeton, NJ, 2009 | Zbl | MR | DOI

[Lur12] Lurie, Jacob Higher algebra (2012) (Preprint, available at https://www.math.ias.edu/~lurie/papers/HigherAlgebra.pdf)

[Lur18] Lurie, Jacob Spectral algebraic geometry (2018) (Preprint, available at https://www.math.ias.edu/~lurie/papers/SAG-rootfile.pdf)

[Mor04] Morel, F. On the motivic π 0 of the sphere spectrum, Axiomatic, enriched and motivic homotopy theory (NATO Sci. Ser. II Math. Phys. Chem.), Volume 131, Kluwer Acad. Publ., 2004, pp. 219-260 | MR | DOI

[Mor06] Morel, F. Rational stable splitting of Grassmannians and rational motivic sphere spectrum, 2006

[Mor12] Morel, F. 𝔸 1 -algebraic topology over a field, Lect. Notes in Math., 2052, Springer, Heidelberg, 2012

[MV99] Morel, F.; Voevodsky, V. 𝔸 1 -homotopy theory of schemes, Publ. Math. Inst. Hautes Études Sci. (1999) no. 90, pp. 45-143 | MR | DOI

[Pan10] Panin, I. Homotopy invariance of the sheaf W Nis and of its cohomology, Quadratic forms, linear algebraic groups, and cohomology (Dev. Math.), Volume 18, Springer, New York, 2010, pp. 325-335 | Zbl | MR | DOI

[PW19] Panin, I.; Walter, C. On the motivic commutative ring spectrum BO, St. Petersburg Math. J., Volume 30 (2019) no. 6, p. 933–972 | Zbl | MR

[Rob15] Robalo, Marco K-theory and the bridge from motives to noncommutative motives, Adv. Math., Volume 269 (2015), pp. 399-550 | Zbl | MR | DOI

[RØ08] Röndigs, Oliver; Østvær, Paul Arne On modules over motivic ring spectra, Adv. Math., Volume 219 (2008) no. 2, p. 689–727 | Zbl

[Sch94] Scheiderer, Claus Real and étale cohomology, Lect. Notes in Math., 1588, Springer-Verlag, Berlin, 1994 | Zbl

[Sch00] Scholl, A. Integral elements in K-theory and products of modular curves, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) (NATO Sci. Ser. C Math. Phys. Sci.), Volume 548, Kluwer Acad. Publ., 2000, pp. 467-489 | Zbl | MR

[Sch17] Schlichting, M. Hermitian K-theory, derived equivalences and Karoubi’s fundamental theorem, J. Pure Appl. Algebra, Volume 221 (2017) no. 7, pp. 1729-1844 | Zbl | MR | DOI

[Spi99] Spivakovsky, M. A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 381-444 | Zbl | MR | DOI

[Spi18] Spitzweck, Markus A commutative 1 -spectrum representing motivic cohomology over Dedekind domains, Mém. Soc. Math. France (N.S.), 157, Société Mathématique de France, Paris, 2018 | Zbl | MR | DOI

[ST15] Schlichting, M.; Tripathi, G. S. Geometric models for higher Grothendieck-Witt groups in 𝔸 1 -homotopy theory, Math. Ann., Volume 362 (2015) no. 3-4, pp. 1143-1167 | Zbl | MR | DOI

[Sta21] Stacks project authors The Stacks project, https://stacks.math.columbia.edu, 2021

[Tho84] Thomason, R. W. Absolute cohomological purity, Bull. Soc. math. France, Volume 112 (1984) no. 3, pp. 397-406 | Zbl | mathdoc-id | MR | DOI

[TT90] Thomason, R. W.; Trobaugh, T. Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III (Progress in Math.), Volume 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247-435 | MR | DOI

Cité par Sources :