Voir la notice de l'article provenant de la source Numdam
Using homological residue fields, we define supports for big objects in tensor-triangulated categories and prove a tensor-product formula.
À l’aide des corps résiduels homologiques, nous définissons le support des grands objets dans les catégories triangulées tensorielles et prouvons une formule pour le support du produit tensoriel.
Balmer, Paul 1
@article{JEP_2020__7__1069_0, author = {Balmer, Paul}, title = {Homological support of big objects in~tensor-triangulated categories}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {1069--1088}, publisher = {\'Ecole polytechnique}, volume = {7}, year = {2020}, doi = {10.5802/jep.135}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5802/jep.135/} }
TY - JOUR AU - Balmer, Paul TI - Homological support of big objects in tensor-triangulated categories JO - Journal de l’École polytechnique — Mathématiques PY - 2020 SP - 1069 EP - 1088 VL - 7 PB - École polytechnique UR - http://geodesic.mathdoc.fr/articles/10.5802/jep.135/ DO - 10.5802/jep.135 LA - en ID - JEP_2020__7__1069_0 ER -
%0 Journal Article %A Balmer, Paul %T Homological support of big objects in tensor-triangulated categories %J Journal de l’École polytechnique — Mathématiques %D 2020 %P 1069-1088 %V 7 %I École polytechnique %U http://geodesic.mathdoc.fr/articles/10.5802/jep.135/ %R 10.5802/jep.135 %G en %F JEP_2020__7__1069_0
Balmer, Paul. Homological support of big objects in tensor-triangulated categories. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 1069-1088. doi : 10.5802/jep.135. http://geodesic.mathdoc.fr/articles/10.5802/jep.135/
[Bal05] The spectrum of prime ideals in tensor triangulated categories, J. reine angew. Math., Volume 588 (2005), pp. 149-168 | MR | Zbl | DOI
[Bal18] On the surjectivity of the map of spectra associated to a tensor-triangulated functor, Bull. London Math. Soc., Volume 50 (2018) no. 3, pp. 487-495 | MR | Zbl | DOI
[Bal19] A guide to tensor-triangular classification, Handbook of homotopy theory (Miller, H., ed.), Chapman and Hall/CRC, 2019 (Available on the author’s web page)
[Bal20] Nilpotence theorems via homological residue fields, Tunis. J. Math., Volume 2 (2020) no. 2, pp. 359-378 | Zbl | MR | DOI
[BC20] Computing homological residue fields in algebra and topology, 2020 | arXiv
[BDS16] Grothendieck-Neeman duality and the Wirthmüller isomorphism, Compositio Math., Volume 152 (2016) no. 8, pp. 1740-1776 | Zbl | DOI
[BF11] Generalized tensor idempotents and the telescope conjecture, Proc. London Math. Soc. (3), Volume 102 (2011) no. 6, pp. 1161-1185 | MR | Zbl | DOI
[BIK08] Local cohomology and support for triangulated categories, Ann. Sci. École Norm. Sup. (4), Volume 41 (2008) no. 4, pp. 573-619 | MR | mathdoc-id | Zbl | DOI
[BIK11a] Stratifying modular representations of finite groups, Ann. of Math. (2), Volume 174 (2011) no. 3, pp. 1643-1684 | MR | Zbl | DOI
[BIK11b] Stratifying triangulated categories, J. Topology, Volume 4 (2011) no. 3, pp. 641-666 | MR | Zbl | DOI
[BIK12a] Colocalizing subcategories and cosupport, J. reine angew. Math., Volume 673 (2012), pp. 161-207 | MR | Zbl | DOI
[BIK12b] Representations of finite groups: local cohomology and support, Oberwolfach Seminars, 43, Birkhäuser/Springer, Basel, 2012 | MR | Zbl | DOI
[BIK13] Module categories for group algebras over commutative rings, J. K-Theory, Volume 11 (2013) no. 2, pp. 297-329 (With an appendix by Greg Stevenson) | MR | Zbl | DOI
[BKS19] Tensor-triangular fields: ruminations, Selecta Math. (N.S.), Volume 25 (2019) no. 1, 13, 36 pages | MR | Zbl | DOI
[BKS20] The frame of smashing tensor-ideals, Math. Proc. Cambridge Philos. Soc., Volume 168 (2020) no. 2, pp. 323-343 | MR | Zbl | DOI
[DP08] The Bousfield lattice for truncated polynomial algebras, Homology Homotopy Appl., Volume 10 (2008) no. 1, pp. 413-436 | MR | Zbl | DOI
[HPS97] Axiomatic stable homotopy theory, Mem. Amer. Math. Soc., 128, no. 610, American Mathematical Society, Providence, RI, 1997 | Zbl | DOI
[HS99] Morava -theories and localisation, Mem. Amer. Math. Soc., 139, no. 666, American Mathematical Society, Providence, RI, 1999 | Zbl | DOI
[Kra00] Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math., Volume 139 (2000) no. 1, pp. 99-133 | MR | Zbl | DOI
[Lur17] Higher algebra (2017) (Online at http://www.math.ias.edu/~lurie/)
[Nee96] The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., Volume 9 (1996) no. 1, pp. 205-236 | MR | Zbl | DOI
[Nee00] Oddball Bousfield classes, Topology, Volume 39 (2000) no. 5, pp. 931-935 | MR | Zbl | DOI
[Nee01] Triangulated categories, Annals of Math. Studies, 148, Princeton University Press, Princeton, NJ, 2001 | MR | Zbl | DOI
[Ste13] Support theory via actions of tensor triangulated categories, J. reine angew. Math., Volume 681 (2013), pp. 219-254 | MR | Zbl | DOI
Cité par Sources :